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16 Confidence intervals

This idea of approximating the binomial distribution through the normal
curve brings up an important topic that we’ll discuss now. If we’re
doing a series of independent trials and we’re recording how often we get
successes, how do we know how close our rate is to the actual probability
of success? For example, if I roll a die three times and I get 6 once, how
do I know that 6 doesn’t appear 1

3 of the time? What if I told you it’s
not a fair die?

This is where we can take the ideas from the law of large numbers
and use them to our advantage. Remember how the higher our n is, the
more likely that our relative frequency was going towards our unknown
probability. So if we had performed the die roll three trillion times and
one trillion times we had a 6 show up, then we’d probably state that
it was biased towards 6 at 1

3 the time. Letting denote our relative
frequency, we know as n increases , but how can we measure
it?

We can actually use the normal approximation. As we increased
z we saw that Φ(−z, z) got closer and closer to 1. So for example, if
z = 4 then which means that if n is
large enough, we can be 99.99% certain that the number of successes np̂
differs from np by less than 4

√
np(1− p). This means that the relative

frequency p̂ will differ from p by . Recall
that

√
p(1− p)/n ≤ 1/2

√
n and so 4

√
p(1− p)/n is at most 2/

√
n. In

other words p is somewhere in the interval . This interval
is called a 99.99% confidence interval for p.Wikipedia: Confidence interval

(binomial) This confidence level is specific to the binomial distribution. You can
define confidence intervals for other distributions, but we won’t cover
that now.Wikipedia: Confidence interval

(general)
Example 16.1 Let’s look at a couple of examples. Say I redo my
rolling of a die example and I roll the die roughly one million times (so
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n is very large). We note that 6 appears roughly 180, 000 times. Find a
99.99% confidence interval for the probability that the die rolls a six.

Notice that one of the key components to this approximation was the
fact that p(1− p) ≤ 1

4 . What this means is that the further from 1
2 our

probability p is, the less accurate this approximation becomes. Sure, we
can just keep increasing n, but what happens if our probability is 1 in a
bajillion? Then our approximation is not very good.

It turns out we can actually measure how good the normal approxi-
mation n is for a given n and p. Then let N(a to b) denote the normal
approximation to a binomial probability P (a to b). Define W (n, p) to
be the worst error in the normal approximation to the binomial dis-
tribution, to be the biggest absolute difference between P (a to b) and
N(a to b) over all integers a and b:

W (n, p) = max
0≤a≤b≤n

|P (a to b)−N(a to b)|

Running quick examples, you can check that for all n ≥ 10 we know
that W

(
n, 1

2
)
≤ 0.01 and when n ≥ 20 then W

(
n, 1

2
)
≤ 0.005. This is

why for p = 1
2 this approximation is really good.

Now, suppose that p 6= 1
2 . Let’s look at an example and see what

happens and we might want to do to correct the problem. In the plot
below, I set n = 100 and p = 1

10 .

0 5 10 15 20

What you’ll notice is that the binomial distribution is slightly skewed
to the left of the normal curve. This push to the left is known as the
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skewness of the distribution. So what we will try and do is push the Wikipedia: Skewness
normal curve a little to the left in order to correct for this. We won’t go
to far into the details, but it turns out what we want to do is first take
the third derivative of our function. Then

We then call the skew-normal curve the curve with the equation:Wikipedia: Skew normal distri-
bution

where skw(n, p) = 1−2p√
np(1−p)

= 1−2p
σ .

Note that this skew function is only true for the binomial distribu-
tion. In general, it’s a lot more complicated.

Notice that when p = 1
2 then skw(n, p) = 0 giving us that f(z) =

ϕ(z). Depending on our choice of p then skw(n, p) can either be positive
or negative. It’s positive if p < 1

2 when the distribution is skewed to the
right. It’s negative if p > 1

2 when the distribution is skewed to the left.

This gives us a second way to approximate the binomial distribution.
For n independent trials where p is the probability of success, then

The term involving skw(n, p) is known as the skewness correction.

Example 16.2 Let’s use this approximation in an example. Suppose I
want to calculate the distribution of 0s in 100 randomly selected digits.
What is the probability of getting 4 or fewer 0s?
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17 Poisson Approximation

Although normal approximation works nicely for probabilities near p =
1
2 , the further we get from 0.5, the worse the approximations will be. We
tried to fix this by moving our approximation left and right, but even
that has limits. The main issue is that the normal curve is symmetric
(the left side and the right side look the same), whereas the binomial
distribution is not a perfect curve. For example, we saw something like
this earlier. If we let n = and p = we get the following
distribution
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0 1 2 3 4 5

It’s so close to the 0 that there is no way we can make a nice bell
curve that matches this. In this case we had let p = 1

n which means that
the expected value is µ = np = n

n = 1. If we follow this train of thought,
as we do more and more trials, n→∞ and p = 1

n → 0, but µ stays at .
We can use this information to describe a curve which closely resembles
the binomial distribution in this case. This “limit distribution” is called
the Poisson distribution with parameter µ since we keep µ constant, but
we take the limit as n→∞.

The Poisson approximation of the binomial distribution when n is
large and p is small is given by

Just like with the normal approximation, the Poisson approximation
is also itself a distribution. The Poisson distribution with parameter µ
is the distribution given by:Wikipedia: Poisson distribution

Let’s look at a couple examples.

Example 17.1 Every time you see a formula “x − y” there’s a 1%
chance you will copy it as “x+ y”. If you have to do 200 problems, what
are the chances you will copy over 2 or more formulas incorrectly?
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So what do these distributions look like as we change µ?

0 1 2 3 4 5

µ= 0.5

0 1 2 3 4 5

µ= 1.0
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0 1 2 3 4 5

µ= 2.0

18 Random Sampling
Throughout the course so far we’ve seen random sampling various times
without ever calling it random sampling. The idea of random sampling
is to start off with a large population and to designate two categories
of people. These categories might be something like “needs glasses”
and “doesn’t need glasses” or it might be “likes the colour red” and
“dislikes the colour red”. Basically the categories should be “opposite”
of one another. We then take a small portion of the large population (a
“random sample”) and we look at the proportion of people that are in
each category. This helps us figure out the proportion of people in each
category for the population at large. Ideally, this would tell us exactly
the proportion in the large population, but this is not always the case.
Additionally, if we already know the proportion in the large population,
we can ask what are the chances of a certain distribution happening
in the smaller sample. We look at these questions through two main
sampling methods

(1)

(2)

18.1 Sampling with replacement

Let N be the number of people in a large population and let n be the
number of people in a sample which are drawn from the large population.
These n individuals are drawn one at a time from the large population
where each individual has the same chance of being chosen. After being
drawn, they are put back into the large population (so a person could
be chosen more than once). Therefore we would have a sequence of
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length n of a set with N elements. This implies we have Nn different
possible sequences which are all equally likely! Since we keep putting
the individuals back into the large population, n could be larger than
N .

An easy way to think about this is a bag full of N marbles. You
take out a marble at a time and you record the colour and put the
marble back into the bag. You do this n number of times. The question
then becomes how well does the recording of the colours match with the
actual distribution of colours in the bag of marbles?

Say R of the marbles are red and the rest B are not red (suppose
they’re blue just to make notation easier). Then .
The distribution of red marbles is given by the probability p = R

N which
is the number we’re trying to find. Notice here that we are working with
a binomial distribution! Since p is static, the approxima-
tion is a good approximation for the binomial distribution with parame-
ters µ = np and σ = √npq. By the ,
if n is large enough then our sample of n marbles is highly likely to give
the correct proportion of red to blue marbles. If you recall, from the sec-
tion on confidence intervals, if we want a confidence interval of 99.99%
we need to look at the interval: p̂± 2√

n
where p̂ is the observed proba-

bility in our sample. If we only want a 95% accuracy, we can just look
at the interval p̂± 1√

n
.

Example 18.1 Say we have a bag with 20 marbles and we want to
know how many are red. We pull out a marble, look at it’s colour and
put it back in. After doing this 35 times we notice that we have counted
25 red. What is the likely probability of a marble being red in the bag
of 20 marbles? How about if we only pulled out 10 marbles and noticed
7 are red?
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Recall that the other question we might want to ask is, if we already
know the proportion in the large population, what is the probability of
getting a certain distribution in the smaller sample? In this case, this
should be fairly easy to calculate! If we already know that the probabil-
ity of getting a red is 1

p then we have:

18.2 Sampling without replacement

Let’s set things up the same as before, N individuals and we pull out n
samples, but this time, we don’t put the samples back in. Once we’ve
taken someone out of the large population, we leave it out. This is just
an ordering of n elements out of N individuals. So that means we’ll
have (N)n = different options, which will be much less
than our previous way of doing things.

In this case, we’ll only look at the second question: if we already
know the probability in the large population, what is the chances of
getting the probability in n pulls?

So say that we have N total marbles and R of them are red and
B = N −R are blue. Then we know that the probability of red is given
by R

N . Now we ask, say I pull out n marbles (without replacement),
what is the probability that r of them are red?

First let’s look at if the first r we pull are red and the rest n− r are
blue. Then we have:

for the chances of pulling a red out each time. Then, the rest of them
are blue and so we need to multiply the above by:

Page 50





































Math 2030 - Elementary Probability Aram Dermenjian

Multiplying these two together we have:

But this is just for one option. We need to actually look at all
combinations of r red appearing in n pulls. That means, we need to
multiply the above by

(
n
r

)
different combinations.

So in total we have:

19 Random Variables
We’ve been working on just one distribution so far: the binomial distri-
bution. But if you were to look through Wikipedia, you’d notice that
there are a ton of different distributions out there! The goal is to now
generalize everything we have done into a more general setting. We
start off with something that has been awkwardly missing in a math
class: variables.

So far when we’ve talked about events, we’ve talked about them as
subsets A of a sample space Ω. This works most of the time, but it can
be hard to know what A is. For example, a lot of times we wrote P (3)
or something to mean “the probability of getting a 3”. Instead of using
the event “get a 3” which is represented by the subset {3} we decided to
just write the number 3. This is what we’re going to try and generalize
and we’re going to create a whole new system for writing things out.

Variables have been used throughout mathematics as a placeholder
for information, so it makes sense that we would use variables for our
new system. We normally have these variables be large capital letters
like X or Y , but they can be anything you prefer and they normally
take the place of normal numbers. For example, if we are rolling a die,
we might be interested in the event “the number 6 is rolled”. To add a
variable, we’d normally replace a number by a variable and go with that,
i.e., “the number X is rolled”. Since we’ve been using capital letters for
events, we’ll let X be the variable we put into an event “the number X
is rolled”. In this case X is called a random variable. Wikipedia: Random variable

As other examples, the random variableX might represent “the num-
ber X is rolled on a die” or “the side X of a coin is flipped” or “the
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number X is drawn out of a hat”, etc. Notice how in each case we don’t
actually say which number is rolled or which side is chosen, instead we
let the random variable represent it.

How does this help? Well, let’s look at the event from before repre-
sented by the random variable X: “the number X is rolled”. We can let
X = 6 mean . Notice
how it gives us language to create new events. So if I were to say X = 3
then you’d know that we mean
in a much more compact way. We can then place these random variables
into our probability function like in order to mean

.
At this point you might be asking, “why not just do something like

” like before? Why are we complicating things? Because com-
plicating things sometimes makes things less complicated! For example,
what about if I want to ask for the event “the number rolled is less than
or equal to 3”? Now, we can just write and we know
exactly what we’re talking about! Even with more complicated events
like “Let A be the subset {2, 4, 6} of all even numbers and find P (A)”, we
can do this easier with our new random variables. We can represent the
above as .

A random variable doesn’t always have to represent a number! If we
look at flipping a coin, I can ask for P (X = H) where H represents get-
ting a heads. These random variables can mean any particular outcome
in our sample space!

Here’s a quick table of everything from above to maybe help. (Sup-
pose we are rolling a fair six-sided die)

English language Random Var. Subset Probability

Number on the die is 6 X = 6 {6} 1
6

Number on the die is less than 3 X < 3 {1, 2} 1
3

Number on the die is x X = x {x} 1
6

Number on the die is less than x X < x {1, 2, . . . , x− 1} x−1
6

Number on the die is in the subset B X ∈ B B |B|
6

If we use X to help define an event A, then we say that the event A is
determined by X. Although we can write P (A) to let us know the prob-
ability, we will henceforth start writing P (X ∈ A) to show that A has
some variable in it. If we go over all possible subsets A, we (must) get a
distribution which we call the distribution of X. In essence, the outcome
of any particular outcome x is given by and of any
subset, via the addition rule, by .

At this point, it might confusing and you might ask what the differ-
ence between x and X are. This is super confusing, so don’t worry! A
random variable is just a normal variable that represents certain things

Page 52













































































Math 2030 - Elementary Probability Aram Dermenjian

inside of events. When we talk about the probability of an event then
we must state what the random variable is equal to for the probability
to make sense. We can have the random variable be equal to a standard
variable ( ), but we can also have it mean anything
else! One thing that never makes sense is as this doesn’t tell
us anything. The book uses the term “dummy

variable” to mean a standard-
/normal variable.

So say I have an event“I roll a five sided die and a I get an X”
and an event “I pull the number Y out of a hat”. Then if were to
say then what we mean is
that the probability that we get u when rolling a five sided die is the
same as the probability of pulling out v from out of a hat.

Aside: As an aside, if you look at the definition of a random vari-
able in Wikipedia, it might be a little confusing since we’re not defining
it in exactly the same way. Since in mathematics we like to be pre-
cise, the exact definition of a random variable is given through a cer-
tain type of function. So X would be X : Ω → E where E is some
space (normally R for us). Then, more precisely we have P (X ∈ A) =
P ({x ∈ Ω | X(x) ∈ A}). Don’t worry about this to much, but it’s a
good thing to know.

Example 19.1 Let’s look at a quick example of what this looks like.
Say I roll a die and I want to calculate some probability functions.

P (X = 2) =

P (X ≤ 4) =

P

(
X

2 ∈ Z
)

=

20 Functions

Sometimes we want to look at random variables as a function of another
random variable. Normally we see this in standard variables by: y =
f(x). Doing this for random variables we get: Y = f(X). What does
this mean though?

It means that if X has some value then Y has the value f(X). The
two are related to one another through the function. This implies that
the distribution of Y can be derived from the distribution of X.

Example 20.1 Suppose we’re rolling two dice and we want to calculate
the sum of the two values. We’ve done this many times, but we’re going
to be using functions this time.

As before, we let (i, j) represent a roll of the two dice. If we let X
be the sum of our dice, then we know that we get a distribution like the
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following:

x 2 3 4 5 6 7 8 9 10 11 12

P (X = x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

These were calculated from the (i, j). Let Y represent the outcomes (i, j)
and let f be the function i+j. In other words .

This is obviously a super easy pointless example. We’re not really
gaining any meaningful insights. What we do learn though is that we
can use functions in conjunction with our variables. Addition doesn’t
do much, but there are limitless possibilities!

21 Joint Distributions
Let’s take this one step further. What happens if an event has potentially
more than one variable? For example, “What is the probability that I get
the 5 of spades in a normal deck of cards?” I could technically represent
this as one variable: “What is the probability that I get a X in a normal
deck of cards?”. But what if I want to ask for the probability of getting
a 5, regardless of suit? I can no longer ask that! In this case it makes
more sense to put in two variables: “What is the probability that I get
a X of Y in a normal deck of cards?”. Now we can ask actually ask for
the probability! We would get where
S is the set of suits. How about our original example? This we can write
as .

Whenever we have two or more random variables in a distribution
we call it a joint distribution. Joint distributions can be a little weird toWikipedia: Joint distribution
work with, but once you’ve done a few examples, they make more sense.

We’ll look at two examples to try and make things more understand-
able.

Example 21.1 First we’ll look at an example of pulling marbles out
of two bags. Say that each bag has 3 red marbles and 1 blue marble.
Our event is represented by “What is the probability of pulling out a X
and a Y ”. Let’s see what the chances are using a table.
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X =Red X =Blue Total

Y =Red 3
4 ·

3
4 = 9

16
3
4 ·

1
4 = 3

16
12
16 = 3

4

Y =Blue 1
4 ·

3
4 = 3

16
1
4 ·

1
4 = 1

16
4
16 = 1

4

Total 3
4

1
4 1

So we can read this table by looking at each column and row for each
random variable. For example, P (X = Red, Y + Blue) gives us .

We can also technically look at any particular row and column to get
the added probability. For example, if we want to know the probability
that the first marble is red, then we’re asking for X to be “Red”. We
can represent this as:

In particular, we can always use that equality whenever we have mul-
tiple random variables:

Example 21.2 Let’s look at the previous example, but just look at one
bag. So say we have one bag with 3 red marbles and 1 blue marbles and
I pull out two marbles (one after another without replacement). Here
I can represent this as the event “I pull out marble X then I pull out
marble Y ”. So looking at the probability table we have:

X =Red X =Blue Total

Y =Red

Y =Blue

Total

We say that two random variables are equal in distribution if

If two random variables are equal in distribution, then we can change The book calls this same distri-
bution
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their variables whenever we want. For example
and we’ll get the same thing!

We say that two random variables are equal if

Another way of saying this is:

Equal in distribution basically says the right column and the bottom
row must be the same. Equal says the sum of the (main) diagonal must
be 1

Notice how we can take this idea further:

P (X < Y ) =

or even further:

P (X+Y = z) =

Example 21.3 Calculate the distribution of X + Y if we roll two fair
six-sided dice.
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22 Conditional Distributions
Joint distributions might be confusing, but if you think about it, we had
already been working with joint distributions for a while! Whenever we
had a conditional probability statement P (A | B), we were working with
two different events/variables at the same time. The only issue was that
it wasn’t done in the framework of random variables. We now think
about everything through the eyes of a random variable.

So let’s now say we want to replace the event A by a random vari-
able. We saw that P (A) is written as using random
variables, so what would our conditional probability look like?

What if we now replace B with a random variable? We get:

Two random variables, easily put in! And just like before, we can switch
these variables out to whatever we like. In particular, we’ll define the
conditional distribution of X given Y = y as

What happens when the events coming from X and Y are indepen-
dent? What does independence mean in this case? We had this defi-
nition for independence P (A ∩ B) = P (A) · P (B) but how do we move
that over to joint distributions? We say that two random variables are
independent if
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