
Week 1

13 May 2021

We start this class at the very beginning: what is probability? When we
think about probability, we normally think that it’s the study of chance.
Such as, what are the chances that I’ll win the lotto or that our favourite
team will win the tournament. But we can also use probability to figure
out whether the information we are looking at is accurate, how different
events can interact with one another, and so much more.

Since, in mathematics, we like to be precise when we talk about the
world, we will be working towards taking the word “chance” and making
it as precise as possible.

1 Events

Normally when we think of chance we think of flipping a coin, rolling
a dice or playing the lotto. All of these are examples of chance which
come from equally likely outcomes. For example, if we look at flipping
a coin, I have 1

2 chance that it will turn out to be heads and 1
2 that

it will be tails. An equal 50% − 50% for both outcomes. We start our
exploration of probability with examples such as the above; examples
where the outcome is equally probable.

So say I want to roll a dice and I want to figure out my chances
of rolling a number. We inherently know the chance, but how do we
do this mathematically? First, we need to take all possible outcomes
and put them into a set. This set is called the sample space, and we
(usually) denote it with an Ω. In our example of rolling a six-sided die, Wikipedia: Sample Space

Note that in the book by Pit-
man, “sample space” is called an
outcome space. The two are the
same thing.

the sample space is Ω = {1, 2, 3, 4, 5, 6}. The elements in our sample
space Ω are normally called outcomes. Something that might or might

Wikipedia: Outcome

not occur based on the outcome are called events. Using the dice, we
might have events such as:

• The dice rolls a six.

• The dice rolls an even number.
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• The dice rolls a number less than 3.

• The dice doesn’t roll a 4.

Our aim is to study what the probability or chance of certain events
occuring is.

Example 1.1 Let’s do an example. Say we’re about to do a raffle in
class and there are 200 students. We draw one name from a hat for who
will get an A+ in the class, no questions asked. What is the sample
space of the raffle? Ω = .

Try and list some events for this space:

•

•

•

So what is an “event” mathematically? An event is a subset of our
sample space Ω. For example, “the dice rolls a six” is represented byWikipedia: Event
the subset {6}. The event “the dice rolls an even number” is represented
by the subset {2, 4, 6}. How is the event “the dice rolls a number less
than 3” represented? .

Sometimes, language actually helps us create these subsets!

“A or B” means A ∪B.
Or: Say I take the event: “The dice rolls a six or a two”. This is really
the combination of two potential events: “the dice rolls a six” and the
event “the dice rolls a two”. Since both are possible, we can represent
this as: {6} ∪ {2} = {2, 6}. In other words, for most purposes, the word
“or” can be thought of as a union of two sets.

“A and B” means A ∩ B. Note
that the book uses AB to mean
A ∩B.

And: What about “and”? Let’s test it out with our event above my
switching the word “or” with “and” - “The dice rolls a six and a two”.
Inherently, if we’re rolling a die one time, this is impossible. You can’t
have two numbers show up by rolling a die so we expect the sample space
to be empty. In terms of sets, we can think of “and” by intersecting sets:
{6} ∩ {2} = ∅. When we see that an event is empty (aka equal to ∅)
then we say that the event is impossible. The opposite of an impossible
event is a certain event and is when the event is Ω.

“not A” means Ω\A.
This is sometimes known as the
“complementary event”.
Wikipedia: Complementary
event

Not: The final word we’ll quickly go over is the word “not”; in other
words, what is the chance of something not happening. An example of
this is the event “the dice doesn’t roll a 4”. What we really want here is
to take our set to be {4} and remove it from our sample space in order
to be left with the actual possible outcomes. In other words, we take
the complement of our sample space: Ω\ {4} = {1, 2, 3, 5, 6}.
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Example 1.2 Let’s try the above with the stereotypical example of
flipping a coin. The sample space here is given by Ω = .
What subset of Ω is represented by the following events:

• The outcome is heads

• The outcome is heads or tails

• The outcome is heads and tails

• The outcome is not head

Here is a table of some useful conversions from English to Set the-
ory/Probability.

Human language Notation Set language
Sample space Ω Collection of outcomes
Event that some outcome in A occurs A Subset of Ω
Not A Ac = Ω\A Complement of A
A and B A ∩B Intersection
A or B A ∪B Union
A, but not B A\B Difference
Either A or B, but not both A M B Symmetric difference
If A then B A ⊆ B Inclusion
Impossible event ∅ Empty set
Certain event Ω Whole sample space.

2 Probability
Now that we’ve discussed events, we want to know what the probability
of a certain event occuring is. If all outcomes in a finite set Ω are equally Wikipedia: Probability
likely then the probability of an event A ⊆ Ω to occur is:

Example 2.1 Let’s look at the four events we had at the very beginning
with rolling a dice. We know that Ω = {1, 2, 3, 4, 5, 6} and so |Ω| = 6.

• “The dice rolls a six.” – First we need to calculate our event A. In
this case A = {6}. So we have

P (A) =

• “The dice rolls an even number.” – This statement is equivalent
to “The dice rolls a 2 or a 4 or a 6”. Recalling that “or” means
union, we have A = {2} ∪ {4} ∪ {6} = {2, 4, 6}. Therefore

P (A) =
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• “The dice rolls a number less than 3.” –

• “The dice doesn’t roll a 4.” – We saw before that

A = {1, 2, 3, 5, 6} = {4}c = Ω\ {4} .

Therefore
P (A) =

Example 2.2 What happens if we flip multiple coins instead of one?
Let’s say we have 3 coins and we flip them one at a time. What is our
sample space?

Each coin can be heads or tails, and since we are flipping them one
at a time we can put them in the order of when we flipped them. In
other words we can think of each outcome as a list of three outcomes:

Notice how each outcome has three values and they are ordered based on
which coin it is referring to. In other words (H,H, T ) is not the same as
(T,H,H) even though they both represent that you got two heads and
one tails. The matters in this case since we are flipping them
one at a time. Therefore our sample space Ω contains the 8 elements
above (i.e., |Ω| = 8).

Let’s look at some events. Say our event is “Flip heads twice.” First,
we must notice that this statement is ambigous! Does the statement
mean we get heads exactly two times or does it mean we flip heads at
least two times? (So three heads would be ok?) Every word is important
in probability. Let’s try both and see the difference.

Flip heads exactly twice: In this case we have

A =

which are all outcomes in our sample space Ω where heads appears two
times. Therefore our probability is given by:

P (A) =

Flip heads at least twice: In this case we are really asking “Flips
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heads twice or flips heads three times”. So our event is given by

A =

which are all possible outcomes. Therefore our probability is given by:

P (A) =

Another event we might want to look at is “We flip heads first”. If
you think about it for a second, you’ll realise we’re just asking what the
first flip’s outcome is, but we’ll be pendantic and do things slowly. Our
set A should contain every outcome whose first entry is H:

A =

Therefore our probability is given by:

P (A) =

Example 2.3 � The following example is a common student mistake!
Let’s see what happens when you think about these flips differently. If
we have 3 coins and we flip them all at once. We might be tempted to
say that we can just look at the sets themselves in order to determine
the probabilities. In this case we would set our sample space to be:

Ω =

In other words, we only have 4 potential outcomes instead of 8. What
happens when we look at the events from the previous example?

“Flip heads at least twice”: Our new event is given by

A =

This gives us a probability P (A) = which is the same as before! We
might be tempted to say that order doesn’t matter, until we look at one
of the other events.

“Flip heads exactly twice”: Our new event is given by

A =

giving us a probability P (A) = . This is definitely not the same as
before!

So what are we doing wrong? First, we need to realise that flipping
coins are all independent of one another. In other words, the result on
one coin does not influence the result on another coin. This means they
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are “independent” which is something we will cover in more depth later
on. Because our coins are independent, looking at coin tosses as sets is
problematic because it doesn’t take into account variations within the
set. In other words, the set {H,H, T} doesn’t take into account that
the tail flip could have come from the first coin or the second coin or
the third coin! Notice how I said “the first coin or the second coin or
the third coin”. What this set actually represents is a union of our three
lists from the previous example, but we randomly decided to combine
them into a set where order doesn’t matter.

This is probably the hardest part about probability: making sure
that your sample space and your events are accurately describing the
problem. It is very easy to merge things together because you didn’t
think about all possible variations beforehand.

3 Counting

We’re going to take a small detour and talk about counting since we are
noticing that set theory and probability and intimitely related. Most of
these seem trivial, but it’s good to be mathematically precise when we
talk about them.

We let |A| denote the number of elements in a set A. Recall that a 1−
1 correspondence is

The correspondence rule: If we have two sets A and B and we can
make a 1− 1 corresponence between the elements then

We say that two sets A and B are disjoint if A ∩B = ∅. If we have
multiple sets A1, A2, . . . , An then we say they are mutually disjoint if
every pair of sets are disjoint, i.e., Ai ∩Aj = ∅ for all i, j.

The addition rule: If we have a set A that can be split into a collec-
tion of mutually disjoint sets A1, A2, . . . , An then

The multiplication rule: Suppose we have k choices to be made one
after another with exactly nj options at each choice with j ≤ k. Then
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the total number of options which can be made are

Sequences: A sequence of length k of elements of S is an ordered list
which has k elements each coming from the set S. Each component is
chosen without consideration of the other ones and so there are |S| = n

options to fill in each component giving us total sequences possible.

Example 3.1 For example if S = {A,B,C} and we look at k = 4
sequences we’ll have 34 = 81 different sequences. Here are some:

Orderings: An ordering of k out of n elements is a sequence of k el-
ements where every entry is different. This means that each time we
chose an element, it can no longer be selected! So we have n options for
the first entry, n− 1 options for the second entry, etc. This means there
are

total options. Recall thatn factorial is given by n! = n(n− 1)(n− 2) . . . 2 · 1.
Then we can represent the above as . 0! = 1

Example 3.2 For example if S = {A,B,X, Y } and we let k = 2 then
we have the following 4!

2! = 4 · 3 = 12 options

Notice how the order matters!

Permututation: A permutation of an ordering of k out of n elements
is a reshuffling of the entries of an ordering.

Example 3.3 For example if I have the ordering (A,B,C) then we
have six permutations:
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Notice how each permutation has the same content, but the order in the
orderings is different.

In this case we have 3 · 2 · 1 total options. Normally when we see
something like this, we use the factorial symbol. In this case 3! = 3 ·2 ·1.

For an ordering with k elements we have permutations.

Combinations: Say that we don’t actually care about order. So
(A,B) and (B,A) are the same thing. In this case we can look at our
ordering and divide by the number of permutations each ordering has.
A combination of k elements out of an n element set S is a subset of
S with k elements. We end up with n!

(n−k)!k! which we normally denote
by . This is called the choice function or the binomial coefficient.
You can read it as “n choose k” because we are taking a set of n elementsWikipedia: Binomial coefficient
and we are chosing k of them.The term “binomial coefficient” is

coming from algebra where (x +
y)n =

∑n
k=0

(
n
k

)
xkyn−k. Example 3.4 For example if S = {tree, fern, sprig, grass} then we

have the combinations of 3 elements given by:

{tree, fern, sprig} , {tree, fern, grass} , {tree, sprig, grass} , {fern, sprig, grass}

Notice that all we did was we chose three out of four elements:
(4

3
)

=
4!

3!1! = 4.

Subsets: Finally, suppose I have an n element set S and I want to
look at all possible subsets of S. Then for each element I need to decide
whether that element is in our subset or not. In other words, I have 2
options for each element. This gives different possibilities.

Example 3.5 For example if S = {A,B} then my subset options are:

∅, {A} , {B} , S

giving us 22 = 4 total subsets.

We normally denote by 2S the . In
other words:

4 Odds

Another way to discuss an event is to describe the odds of an event
happening which is often used in gambling. (Think of when people say
“the odds are 3 to 2 that the person will win”.)
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Odds are normally just another representation of probability that
compares the chance of something occuring vs the chance of something
not occuring. In mathematical terms, the odds in favour of something
happening are |A| to |Ac|. Alternatively, the odds against something Wikipedia: Odds
happening are |Ac| to |A|. Usually these are denoted as |A| : |Ac|

Example 4.1 For example, if we roll a six sided dice, and we want to
find the odds of rolling a 4.

We use odds super rarely in this class as it’s just a different represen-
tation of probability itself. It is something that you should know though
as this is an extremely common way of representing probability in the
real world.

Example 4.2 Say you’re watching a horse race and they say horse A
has odds 7 : 1 of winning. What is the probability that the horse will
win?

5 Interpretting probability

So we talked about the (extremely super) basics of probability, but a
question we ask next is how should we interpret a probability? In other
words, when we know the probability of something occuring, how do
we want to use/interpret that probability? There are two main ways of Wikipedia: Interpretations
interpretting probability called “frequency” and “subjective” interpre-
tations. There are other interpretations such as “propensity”, “logical”
and “predictive”, but those you can look up on wikipedia or another
book.
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Frequency interpretations ask
. When we look at

probability from this standpoint, we call it frequency probability.Wikipedia: Frequency probabil-
ity

Usually we use this interpretation when something happens more
than once. If you find yourself asking “how often will x occur”, then
you’re thinking in frequency terms.

In real life, we normally test probability by running examples to see
how often things actually happen in order to make sure we didn’t forget
something. For this, we make a prediction using probability and then we
run simulations to record the relative frequency. The relative frequency
is a proportion measuring how often/frequently something occurs in a
sequence of observations. We normally record these observations over
time and see what value they trend to.

Example 5.1 Say we want to verify that the chance of rolling a 5 on
a six-sided die is 1

6 . What we would do is roll the die once and record if
it was a 5 or not. We then roll it again and record if it was a 5 or not.
We repeat this process for an extremely long amount of time, always
recording whether 5 occurred or not. This gives us a list of how often 5
occurred up to a point. For example say we were super lucky and saw 5
appear the 3rd, 4th and 7th time we rolled a dice out of ten times. Our
list would look like:

Notice that the numerator increased by one each time I had a suc-
cess (i.e., I rolled a 5) and the denominator increased for each time an
attempt was made.

After our simulations are done, we can plot these results on a graph
to see what they look like. Our simulation gives us points (i, xi

i ) where
i is the ith roll and xi is the number of cases up to that point. Using
our data from above we would have the points:

I used a computer to simulate rolling a die 500 times and the resulting
plot looks like this:
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Figure 1.1: Frequency of 5 on a six-sided dice out of 100 trials

Notice how we never get exactly 1
6
∼= 16.6%, but we get closer and

closer as time goes on.

Subjective interpretations ask us to calculate chance using
. For exam-

ple, during an election we might want to know whether our preferred
candidate has a chance of winning or not or which horse is going to
win a horse race or what the chances of surviving a medical procedure
are. When looking at probability from this standpoint, we refer to it as
Bayesian probability. Wikipedia: Bayesian probability

The textbook refers to Bayesian
probability as subjective proba-
bility.

Since these types of interpretations are normally based on opinions
and there are a lot of uncertainties involved, we won’t go into this type
of interpretation deeply. For now, it suffices to know that it exists and
what it means.

6 Distributions

We’re now going to take probability and put it neck deep in mathematics.
So far what we’ve been doing is starting with some set Ω of possible
outcomes which we called the sample space. We then took events and
we represented them by subsets A of Ω. Finally, we created a probability
function P which took A and assigned it a number.

We’ll now formalize this and try and make it more mathematically
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precise. We let Ω be some set of outcomes. Note that we don’t assume
Ω to be finite nor do we assume that every outcome is equally likely to
occur. Let 2Ω denote the set of all subsets of Ω and let A ∈ 2Ω, i.e., A is
a subset of Ω. We define the probability map to be the map P : 2Ω → R
which sends every subset to some real number.

Although all of this makes mathematical sense in set theory, we want
to ask, how do we know if this represents probability or not? For this, we
need to define some set of rules which ensure that P behaves “nicely”.
One easy example is that for every A we want P (A) to be positive!
(What does negative probability even mean?) What other rules do we
need?

Let’s consider multiple events happening. Since we’re thinking of
events as sets, let’s break down what happens when sets interact with
one another. We’ve already seen union, intersection, etc. but now we’ll
introduce something called a partitioning. We say that two sets A and
B are disjoint if A ∩B = ∅. We use the notation A tB to mean A ∪B
where A and B are disjoint. An event A is partitioned into n smaller
events if:

A = A1 tA2 t · · · tAn.

Since we are breaking apart A into smaller chunks, one things we wantFor us, event and subset are syn-
onymous. Also, remember that ∪
just means “or”.
We can also technically partition
A into an infinite number of sub-
sets! We’ll look at this in later
classes.

is that the sum of the little chunks should equal the probability of A
itself. This gives us a second rule:

P (A) = P (A1) + P (A2) + . . .+ P (An)

Another rule we might want is that if A = Ω then our probability
should be 100%.

In particular, we end up having three rules, which together we call
the rules of proportion and probability.

• Non-negative: P (A) ≥ 0

• Addition: If A1, A2, . . . , An is a partition of A then

P (A) = P (A1) + P (A2) + . . .+ P (An)

• Total one: P (Ω) = 1.

A distribution over Ω is a function of subsets of Ω satisfying these three
rules.Wikipedia: Distribution

With this we can be a little more stringent with our language trans-
lations from before.

Theorem 6.1 (Complement Rule) The probabily of the complement of
an event A is

P (not A) =

Page 14

https://en.wikipedia.org/wiki/Probability_distribution










































Math 2030 - Elementary Probability Aram Dermenjian

Proof.

Theorem 6.2 (Difference Rule) Suppose that A occuring implies that
B will occur, i.e., A ⊆ B. The probability that B will occur and A will
not is given by:

P (B and not A) =

Proof.

Theorem 6.3 (Inclusion-Exclusion) Let A and B be two subsets of Ω.
Then

P (A ∪B) =

Proof.
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Example 6.4 Say I have a bag of marbles and I tell you that 15% of
the marbles are blue, 12% are red and 5% are both red and blue. If I
pull out a marble, what are the chances that the marble is not blue?

If I pull out a marble, what are the chances that the marble is red,
but not blue?

If I pull out a marble, what are the chances that the marble is either
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blue or red?

Example 6.5 Say I roll a 6-sided die twice. What is the distribution
of the sum of the values?

Recall that the sample space for rolling a die twice can be represented
by ordered pairs (i, j) and that we end up with 36 possible outcomes. To
compute the distribution of the sums, we need to figure out how many
times each sum appears.

We know that to get a 2 we need to roll a 1 followed by a 1 (repre-
sented by (1, 1)). Since this is the only way we know P (2) = 1

36 .
Similarly, to get a 7 we have the following 6 options

(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)

Therefore, we get the following distribution:

P (2) = 1
36 , P (3) = 2

36 , P (4) = 3
36 , P (5) = 4

36 ,

P (6) 5
36 , P (7) = 6

36 , P (8) = 5
36 , P (9) = 4

36
P (10) 3

36 , P (11) = 2
36 , P (12) = 1

36

2 3 4 5 6 7 8 9 10 11 12
0

2

4

6
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6.1 Bernoulli p distribution

Probably the easiest distribution to understand is the Bernoulli distri-
bution. It is basically a generalization of . We supposeWikipedia: Bernoulli p distribu-

tion that Ω has exactly two outcomes {A,B}. We let P (A) = p ∈ [0, 1] and
we let P (B) = 1−p, which also is contained in [0, 1]. Notice that Ac = B

and Bc = A.
Let’s verify that this actually gives a distribution. First, notice that

every subset gives a probability between 0 and 1. Next, notice that the
only set that can be partitioned is Ω with the partition A and B. Also
notice that

P (Ω) = P (A) + P (B) = p+ 1− p = 1.

Since all three points of the rules porportion and probability are satisfied,
this is a distribution!

6.2 Discrete uniform distribution

A discrete uniform distribution is a generalization of .
In essence we let Ω = {1, 2, . . . , n} be a set of n elements. We supposeWikipedia: Discrete uniform dis-

tribution
Note that the book uses “uniform
distribution on a finite set” to
mean discrete uniform distribu-
tion.

that the probability of chosing any one of them is given by 1
n , i.e., each

outcome is equally likely.
To verify this is a distribution, we first notice that P (A) = |A|

n for
everey A ⊆ Ω and that P (A) ∈ [0, 1] always. Partitioning can be proved
inductively, and the final rule can be deduced from above.

If n = 2, then the uniform
distribution is the same as the
Bernoulli 1

2 distribution.
6.3 Continuous uniform distribution

A continuous uniform distribution is a generalization of the
to the set of

real numbers. Here the idea is that we take an interval (a, b) (whereWikipedia: Continuous uniform
distribution
Note that the book uses “uniform
(a, b) distribution” to mean con-
tinuous uniform distribution.

a < b) and we pick a point randomly in the interval. (We assume that
every point has an equal chance of getting picked). In this case we can’t
ask questions like “What is the probability that we pick the point x”
because the chance is 0. (The reasoning for this is discussed in future
lectures). Instead we ask questions like “What is the probability that
the point is between x and y where a < x < y < b”. The probability
in this case is given by y−x

b−a . If a = 0 and b = 1 then we call this the
standard uniform distribution.
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