Week 5

Exercise 52 Suppose that we have *m* different (disjoint) random variables X_i , where each has probability p_i of occurring. Let *n* be the number of attempts made and let k_i be the number of times that the *i*th outcome happened out of the *n* attempts. For i < j:

- (1) What is the distribution of X_i ?
- (2) What is the distribution of $X_i + X_j$?
- (3) What is the joint distribution of X_i , X_j , and $n X_i X_j$?

(Just give a formula for all parts.)

Answer. (1) This is basically asking compare i with everything else. So there's a p_i chance of success and $1 - p_i$ chance of failure. This is basically the binomial distribution. Since we know i occurs k_i times with probability p_i we have:

$$P(X_{i} = k_{i}) = {\binom{n}{k_{i}}} (p_{i})^{k_{i}} (1 - p_{i})^{n - k_{i}}$$

(2) Notice that $X_i + X_j$ is just telling us when X_i or X_j occurs. This is given by the probability $p_i + p_j$ since they are disjoint. The chance of this not happening is given by $1 - p_i - p_j$, giving us the binomial distribution:

$$P(X_i + X_j = k_i + k_j) = \binom{n}{k_i + k_j} (p_i + p_j)^{k_i + k_j} (1 - p_i - p_j)^{n - k_i - k_j}$$

(3) This final one is just a multinomial distribution:

$$\binom{n}{k_{i}, k_{j}, (n-k_{i}-k_{j})} (p_{i})^{k_{i}} (p_{j})^{k_{j}} (1-p_{i}-p_{j})^{1-k_{i}-k_{j}}$$

Exercise 53 Let X and Y be two independent random variables which are each uniformly distributed on $\{1, 2, ..., n\}$. Find:

- (1) P(X = Y)
- (2) P(X < Y) and P(X > Y)
- (3) $P(\max(X, Y) = k)$ for $1 \le k \le n$
- (4) $P(\min(X, Y) = k)$ for $1 \le k \le n$
- (5) P(X+Y=k) for $2 \le k \le 2n$

Answer. We note that since X and Y are uniformly distributed, we know their probability for success is given by $\frac{1}{n}$. Additionally, since they're independent, we know $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$.

(1) We have:

$$P(X = Y) = \sum_{i=1}^{n} P(X = i, Y = i) = \sum_{i=1}^{n} P(X = i) \cdot P(Y = i) = n \cdot \frac{1}{n^2} = \frac{1}{n}$$

(2) By symmetry we have P(X < Y) = P(X > Y).

$$1 = P(X > Y) + P(X < Y) + P(X = Y) = 2P(X < Y) + \frac{1}{n}$$

Therefore, $P(X < Y) = \frac{1 - \frac{1}{n}}{2} = \frac{n - 1}{2n}$

(3) Using partitions, we have:

$$P(\max(X,Y) = k) = P(X = k, Y < k) + P(X < k, Y = k) + P(X = k, Y = k)$$

= $P(X = k)P(Y < k) + P(X < k)P(Y = k) + P(X = k)P(Y = k)$
= $\frac{1}{n} \cdot \frac{k-1}{n} + \frac{k-1}{n} \cdot \frac{1}{n} + \frac{1}{n} \cdot \frac{1}{n}$
= $\frac{2(k-1)+1}{n^2}$
= $\frac{2k-1}{n^2}$

(4) Using partitions, we have:

$$\begin{split} P(\min(X,Y) &= k) = P(X = k, Y > k) + P(X > k, Y = k) + P(X = k, Y = k) \\ &= P(X = k)P(Y > k) + P(X > k)P(Y = k) + P(X = k)P(Y = k) \\ &= \frac{1}{n} \cdot \frac{n - k}{n} + \frac{n - k}{n} \cdot \frac{1}{n} + \frac{1}{n} \cdot \frac{1}{n} \\ &= \frac{2(n - k) + 1}{n^2} \\ &= \frac{2n - 2k + 1}{n^2} \end{split}$$

Another way to do this is to notice that

$$P(\min(X,Y) = k) = P(\max(n+1-X, n+1-Y) = n-k+1) = \frac{2(n-k+1)-1}{n^2} = \frac{2n-2k+1}{n^2}$$

(5) Finally, we look at P(X + Y = k). First thing we need to note is that both X and Y are symmetric about $\frac{n+1}{2}$. So X + Y is symmetric about $2 \cdot \frac{n+1}{2} = n + 1$. So we first look at the first half.

Let k be between 1 + 1 = 2 and n + 1, *i.e.*, $2 \le k \le n + 1$. Then

$$P(X+Y=k) = \sum_{i=1}^{k-1} P(X=i)P(Y=k-i) = (k-1) \cdot \frac{1}{n} \frac{1}{n} = \frac{k-1}{n^2}$$

We can now use symmetry to solve when $n + 1 \le k \le 2n$:

$$P(X + Y = k) = P(X + Y = (n + 1) + (k - (n + 1)))$$

= $P(X + Y = (n + 1) - (k - (n + 1)))$
= $P(X + Y = 2(n + 1) - k)$
= $\frac{2(n + 1) - k - 1}{n^2}$
= $\frac{2n - k + 1}{n^2}$

Exercise 54 Suppose that you throw three (fair six-sided) dice and look at the sum. What are the chances that the sum of the numbers is 11 or more? (You should be able to do this without a calculator.) *Answer.* We know that the numbers on each dice is symmetric about 3.5. We have three dice, so the sum of

The numbers is symmetric about $3 \cdot 3.5 = 10.5$. In other words, the probability of getting 11 or more is the same as getting 10 or less. Therefore, since the two sets are complements, the probability is $\frac{1}{2}$.

Exercise 55 Suppose I'm looking at the grades for the Monday update and the mastery quiz in class (of 250 people). For the Monday update 10% of the students got a 0 and 90% got a 1. For the mastery quiz 20% of the students got a 0 and 80% got a 1. I want to see how well my students are doing in two different ways. First I create one list where I add each student's grade from the two quizzes. On another list I multiply each student's grade from the two quizzes.

- (1) Can I calculate the average grade for students on the first list? (the one I added them together) If so, what's the average?
- (2) Can I calculate the average grade for students on the second list? (the one I multiplied them together) If so, what's the average?

Answer. The average of the Monday update is $0 \cdot 0.1 + 1 \cdot 0.9 = 0.9$. The average of the mastery quiz is $0 \cdot 0.2 + 1 \cdot 0.8 = 0.8$.

To help explain, we'll look at a small example with two students: s_1 and s_2 . s_1 gets a score of u_1 (which is equal to 0 or 1) for the Monday update and a q_1 for the mastery quiz. Similarly s_2 gets a score of u_2 for the Monday update and a q_2 for the mastery quiz.

(1) Looking at our small example, this first list is taken by doing the following:

$$\frac{(u_1+q_1)+(u_2+q_2)}{2}$$

But, addition is distributive! So we have

$$\frac{(u_1+q_1)+(u_2+q_2)}{2} = \frac{u_1+u_2+q_1+q_2}{2}$$
$$= \frac{u_1+u_2}{2} + \frac{q_1+q_2}{2}$$

In other words, the average of the overall grade is just the sum of the averages of the individual grades! So all we have to do is: 0.9 + 0.8 = 1.7, giving us the average grade for students on the first list.

(2) Looking at our small example, this second list is taken by doing the following:

$$\frac{(u_1\cdot q_1)+(u_2\cdot q_2)}{2}$$

Notice how at this point, there is no way for me to split this apart like we did in the first exercise. In other words, I *can not* calculate the average grade for students on the second list.

Exercise 56 What is the expected value of the number of spades drawn if you pull 7 cards randomly from a (well-shuffled, normal) deck of 52 cards?

Answer. We know that 13 out of 52 cards are spades (or exactly $\frac{1}{4}$). Since we're looking at success/failure, indicator functions are a great way to approach this. Let X_i denote the *i*th card where $X_i = 1$ if the *i*th card is a spade, or 0 otherwise. Then we're asking what is E(X) where $X = X_1 + X_2 + \ldots + X_7$.

$$E(X) = \sum_{i=1}^{7} P(X_i = 1) = 7P(X_1 = 1) = 7 \cdot \frac{1}{4} = \frac{7}{4}$$

Note here we are using the fact that $P(X_i = 1) = P(X_1 = 1)$ for all *i*. Here is an example for when i = 2

and you can expand from there.

$$P(X_{2} = 1) = P(X_{2} = 1 \cap X_{1} = 1) + P(X_{2} = 1 \cap X_{1} = 0)$$

= $P(X_{2} = 1 \mid X_{1} = 1)P(X_{1} = 1) + P(X_{2} = 1 \mid X_{1} = 0)P(X_{1} = 0)$
= $\frac{12}{51} \cdot \frac{13}{52} + \frac{13}{51} \cdot \frac{39}{52}$
= $\frac{(12 + 39)(13)}{51 \cdot 52}$
= $\frac{51 \cdot 13}{51 \cdot 52}$
= $\frac{13}{52}$