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Question 1 You have two coins in front of you: red and blue. The blue coin flips a head with probability 3
and the red coin flips a head with probabilit

If both coins flip heads, you go north_3 blocks. ®

If blue is heads and red is tails, you go north_1 block

If blue is tails and red is heads, you go east 1 block

If both_coins flip tails, you go east 2 blocks

What is your expected location after 258 fip? V\rhdt is the standard deviation fo
of both coins?

r Eomg north in exactly 1 flip

Assume coin flips are independent for each coin and that both coins are independent. You must use random
variables.
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Exercise 75 Suppose that X has/density function f(z) r?(1 —z)? for 0 < = < 1 and is equal to 0

everywhere else. —g- l&d -
(1) What is the value of ¢?
- 4
(2) What is the expected value of X7 {\@\\/\A'
/ {_ﬁ—
(3) What is the variance of X7 ‘——___——\6 { o]
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Exercise 74 Instead of Chernobyl, pretend we're in a laboratory where we're looking into radioactive sub-
stances (safely). We know that radioactive substances release particles known as a-particles. We set-up a
counter (like a Geiger counter) to see how many a-particles are given off in a time period. Suppose that
we have two different substances and they are emitting a-particles independently of one another. The first
substance has a Poisson distribution with parameter 3.87 and the second substance has a Poisson distribution
with parameter 5.41 (in a given time frame). What is the probability that the counter is hit by at most 4
a-particles (based on the time frames given by the distributions)?




Exercise 71 You've been hired by Aram to make sure his exercises don’t have errors. On average there is 1
~error per page. What is the probability that after Aram has written all 300 pages of his exercise sheets there
~will be at least one page that has at least 5 errors on it? (Assume Poisson distribution and that each page
~ having errors is independent.) -




Exercise 70 Suppose we're making chocolate chip cookies and we want the probability of a cookie containing
at least 1 chocolate chip to be at least 99%. How many chocolate chips must a cookie contain on average?




