
Week 8

24–28 Feb 2020

8.1 Rates of Change - §3.7

In the last couple weeks we’ve been looking at different ways to apply derivatives
into the real world. Most of these came through rates of change.

What is "rate of change"? It means "how much something is changing".
This can be interpreted in many different ways! In the astronaut example,
we talked about how velocity is the rate of change of position. We talked
about acceleration being the rate of change of velocity. In a lot of our other
examplese we looked at how much something changes over time and figuring out
the instantaneous rate of change at some fixed time. We looked at the following:

• Acceleration/Velocity (Astronauts!)

• Density of objects

• Electricity flow (current and Ohm’s law)

• Rates of chemical reactions

• Population growth

We’re now going to continue looking at how derivatives help in the real
world.

�

The examples here are the same examples in the book. There are a bunch
of even more exciting examples that can be found through a quick google search
of applications of derivatives.
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Example 8.1 We first look at thermodynamics. In thermodynamics we’re
looking at how mcuh something can be compressed. So given some amount of
pressure, the volume of a substance is going to change. The rate of change is then
just the change of volume over pressure: dV/dP . The isothermal compressibility
is then defined to be:

isothermal compressibility = β = − 1
V

dV

dP

In other words, β measures how fast, per unit volume, the volume of a substance
decreases as the pressure on it increases (at constant temperature).

Let V = 3.5
P 2 and let’s figure out the isothermal compressibility when the

pressure is 10 kPa (kilopascals). First we must calculate dV/dP .

dV

dP
=

Then we calculate β.

β = − 1
V

dV

dP
=

So then β(10) = .

Example 8.2 Our next example looks at economics. If we let C(x) denote
the total cost that a company incurs in producing x number of products then
C is called the cost function of x. What happens if we change the number of
products produced? This gives us a rate of change! We get the following:

∆C
∆x = C(x2)− C(x1)

x2 − x1

which tells us how much everything is changing. The marginal cost is just the
instantaneous rate of change of the cost. In other words

marginal cost = lim
∆x→0

∆C
∆x = dC

dx

�

Wait!!! Hold up. You can’t have half a product. Like if I’m selling a doll,
I can’t just sell half a doll! So what does ∆x → 0 even mean?! Basically what
we are saying here is that if the number of products is big enough then we can
appoximate the addition of one additional product, by taking the derivative. In
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other words we are saying:

C ′(n) ≈ C(n+ 1)− C(n)

This makes life easier since maybe calculating C twice is much more difficult for
a computer (or a human) than calculating the derivative once and calculating
it once.

Let’s pretend we are working for Willy Wonka and he wants to figure out
the marginal cost of the ever-lasting gobstopper. He’s super secretive so he
only wants to produce 10 of them for now. What is Wonka’s marginal cost if
C(x) = arcsec(x) + x2.

First we must find the derivative!

C ′(x) =

Then calculating at x = 10 we get:

C ′(10) =

8.2 Exponential Growh and Decay - §3.8

We’ve also done some exponential growth and decay problems already. We saw
this in the population growth case.

A lot of times, things grow and decay proportional to themselves. So in
essence, in a population, you grow based on how many people are present, and
that growth in measured by some proportion of the current number. As an
example: If we take a census in 2015 and then take a census in 2020 then we
might find that the population grew by 20%. What this means is that if P is
the population in 2015, then 1.2P is the population in 2020. So the population
is measured in proportions.

This rate of change can be made instantaneous by taking the derivative,
giving us:

dy

dt
= ky

where k is the proportion.
We’ve only seen one function where y stays itself after taking the derivative!

The exponential!!! That means, usually with growth and decay, we are dealing
with the exponential function.
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In fact, it is known that the only solutions to the equation dy
dt ky are the

exponential functions:
y(t) = y(0)ekt

Let’s look at some examples where we use these exponential functions.

Example 8.3 Let’s first look at the nucleur armageddon. In other words:
radioactive decay. This example is different from the population growth one
because we are actually decreasing the volume of a radioactive substance rather
than increasing. In essence, if we have some particle then it’s mass decays
exponentially by the following formula:

m(t) = m0e
kt

where m0 is the initial value, k is some constant for the particle, and t is the
variable. In order to calculate this, physicists use something called the half-life
of a particle. The half-life of a particle is the time needed for half of the particle
to decay. We use all these facts in the following example.

So let’s suppose we have 1kg of uranium-235. It takes 704 million years for
1 gram of uranium-235 to decay to 1/2 a gram. In other words, the half-life of
uranium-235 is 704 million years = 704000000. We already know that we are
starting off with 1000 grams of uranium-235 so that means m0 = 1000. But
how do we find k?

Using the half-life! We already know that m(704000000) should be half the
initial mass since 704000000 is the half-life. So So

m(t) =
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How much of our uranium will be left over in 5 billion years when the sun
dies out?

Example 8.4 Our next example uses Newton’s law of cooling. We’re going to
be looking at the temperature of an object over some time, so we denote this
function by T (t). Newton’s law of cooling says that

dT

dt
= k(T − Ts)

where Ts is the temperature of the surroundings. To calculate things, we need
to fix things up. So we let y(t) = T (t) − Ts. Then y′(t) = T ′(t) and so our
equation above becomes:

y′(t) = ky

which matches our exponential formula from above.
So suppose that we just made some hot boiling tea (or coffee) and it’s just

chilaxing at room temperature (20◦). We know that in 30 minutes, the tea will
be 55◦. Considering that the perfect drinking temperature for tea is 65◦, when
should you drink your tea?

This is a ton of information! So let’s break it down slow. First, let’s figure
out our formula:

dT

dt
= k(T − Ts) =

We also know that T (0) = and so y(0) = T (0)−Ts = .
Also, we know that T (30) = and so y(30) = T (30)−Ts = .
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Then y(t) = y(0)ekt (from our equation earlier!). We can now calculate k:

So now we want to figure out when T (t) = in other words when y(t) =
. Therefore: In other words, we must wait about 20

minutes after pouring tea before it is at perfect temperature.
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8.3 Related Rates - §3.9

Related rates are notoriously complicated. They are word problems that are
difficult to understand and don’t relate to anything in the real world. Although
they are not fun, they teach us how to problem solve in the real world. At a
job, no one is ever going to give you a function and say "find its derivative".
Instead they are going to explain a problem to you, give you a ton of data, and
expect you to solve it. This is what this section aims to do:

(1)

(2)

(3)

These are hard because they require a lot more thinking than just memo-
rization. Even though they are difficult, there are some steps you can take to
help you:

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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Example 8.5 You’re walking along the street one day when and you remember
it’s your friend’s birthday tomorrow! You totally forgot to by them a birthday
present!!! But then you come up with a brilliant idea, you’re going to buy them
a ton of balloons with their face on each one. You decide to go to Sky’s: your
local non-binary balloon seller! After a 30 minute walk, you get to Sky’s and
ask them about making you balloons with your friend’s picture on it. Sky turns
to you and says they would love to help, but their boss came up with a new
rule. All employees need to be able to calculate the rate at which the radius of
a balloon increases or else they can’t sell any balloons. They turn to you and
ask if you would help them figure it out. Armed with calculus, you tell Sky yes,
and buckle down to help them.

Sky tells you that when the put the balloon on the helium pump, the spher-
ical balloon’s volume increases at 100 cm3/s. Can you help them figure out the
rate at which the radius of the baloon is increasing? What’s the rate when the
diameter is equal to 20 cm?
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Example 8.6 After grabbing your balloons you continue on your way home.
As you’re heading home you decide to walk by a construction site to see your
favorite construction worker: Sandra. You walk over to the construction
site and see Sandra standing next to a ladder on the ground getting ready to
do something. Wanting to know what’s on her mind, you grab a hard hat from
the table and walk over to her to see what’s up. Not looking away from the
ladder, she tells you she was just about to move the ladder to start painting the
wall. She then turns to you and notices all your balloons and a grin appears on
her face! "We should tie the balloons to the ladder and let the balloons lift the
ladder up", she says. Although you don’t want to lose the balloons, this seems
like fun so you go with it. She takes the balloons and puts them on the 10 metre
long ladder. You both start noticing that the ladder starts moving away from
you both at a rate of 1 metres per second. How fast will the top of the ladder
be moving away from you when the ladder is 6 metres up?
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Exercise 8.7 After helping Sandra with her ladder, you realize you’re gonna
be late to your dinner date tonight! You run home, drop off the balloons and
quickly freshen up. Looking at your watch you realize you’re defs going to be
late if you don’t leave stat. You call an uber and decide to click on the "sports
car driver" option. Within 30 seconds a sports car driver meets you in front of
your house, introduces himself as Vito. Remembering that Vito was your city’s
four time reigning champion in sports car driving, you know you’re gonna make
it to your date on time. You hop in his car and you’re on your way.

As you’re heading to the restaurant, you look at Vito’s speedometer and
notice he’s going 100 km/h! And in a school area! You’re confident you’ll
make it in time, only to realize you’re coming up to the "intersection of doom".
You look around and notice another sports car uber driver on the other street
approaching the intersection as well. The other driver is Morty! The infamous
sports car driver from the city over who won nationals last year! Realizing that
if your car doesn’t hit the intersection first, you’re going to be late to your date,
you decide to quickly calculate who’s going to arrive at the intersection first.
Although you are 4 km from the intersection, you notice that the other car is
going arond 80 km/h and that the distance between your cars is decreasing by
80 km/h. Will you make it to your date in time?
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Example 8.8 Although you were late for your date, your date doesn’t mind
and you end up having an amazing time at the restaurant. So good in fact, that
you invite them to your friend’s birthday party tomorrow! When tomorrow
comes, you decide you need to make a cake for your friend, but you want it to
be a special cake, so you’re going to make it a cone shaped cake! You look for
your cone shaped pan and find the one with a 10 cm radius and is 20 cm tall.
You make the cake mix and start pouring the batter into the pan (pointy side
down) at around 2 cm3/min. While your pouring, your date from last night
calls and asks what you’re doing before the party. You tell them and they ask
you how fast the batter is rising in the pan? You notice that your batter just
hit the 5 cm mark, how fast is it rising?
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8.4 Linear approximations and differentials - §3.10

Recall that the derivative gives us the slope of the tangent line to a function.
What if we want to get an approximation of the line itself and not just the
slope?

Let a be some point on a graph.
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The approximation f(x) ≈ f(a) + f ′(a)(x − a) is called the linear approxi-
mation or tangent line approximation of f . The linear function whose graph is
the tangent line is given by

L(x, a) = f(a) + f ′(a)(x− a)

is called the linearization of f at a.
�

The book uses L(x) instead of L(x, a). This is confusing because the
linearization depends on our choice of a! We’ll see this in the next example.

Example 8.9 Let f(x) = . Find the linearization of f
at 1 and at 3.

First, let’s find f ′(x).

(1) Let a = 1.

(2) Let a = 3.

Notice that these two linearizations are different! It’s important to remember
that a linearization depends on your choice of a.
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How close is this approximation though?

Example 8.10 Suppose we want to calculate f(3.112347) from the function
above. In a calculator, we find:

f(3.112347) = 1.34966285

but sometimes, life happens and we don’t have access to a calculator and/or
the calculator is wrong. So let’s use our linear approximation to see what the
approximation would give. We said that f(x) ≈ L(x, a) for some a close to x.
Let a = 3 since 3 and 3.112347 are fairly “close”. Then

L(3.112347, 3) =

This is not to bad of an approximation!

The whole point of approximation is to make the calculation significantly
easier by using a linear function to approximate, rather than trying to solve
some big nasty complicated formula.

Example 8.11 Find a good approximation for f(x) = xx for x = 8
9 .
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Exercise 8.12 With a partner, find the linearization of f(x) = sin(x) for x
really close to 0.
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