
Week 9

3.3 Polar coordinates

The algebraic expressions from the preceding section suggest a connec-
tion between the three types of curves. The first observation is that all
the curves are described by quadratic expression, but looking closely we
see that if we were working with complex numbers then (after substi-
tuting b with ib) ellipses and hyperbolas have the same expression.

In this section we will look at expressions for these curves in terms
of focal polar coordinates, that is polar coordinates where the origin is
a focus for the curve. This will highlight a deeper relationship between
the curves and introduce the notion of eccentricity.

3.3.1 Ellipse or hyperbola

We begin with a treatment of the ellipse and hyperbola together. Let
the origin O = F1, be the first focus and let θ = 0 indicate a direction
towards F2. Let P = (r, θ) be a point on the curve C, which is an ellipse
or a hyperbola. For each θ there are two choices of r that give a point
on the curve C. In the case of the ellipse we may always assume that

, see Figure 12. In the case of the hyperbola things are slightly
more complicated, here we say either: P is closer to F2 and ;
or instead P is closer to F1 and , see Figure 13. Therefore we
have two cases for the hyperbola. Note that making the opposite choice
would lead to a different, but perfectly good equation for the curve C.

O = F1 F2

P

r
2a − r

2c

θ

Figure 12: The radial distance r and angle θ for a point on an ellipse.
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F1 = O
F22c

r
r − 2a

ϑ

F1 = O F2
2c

P

−r
2a − r

θ

Figure 13: The radial distance r and angle θ for points on a hyperbola.
In the left-hand diagram r > 0, whilst on the right r < 0.

Wikipedia: cosine rule

We can now apply the cosine rule to the triangle formed by the points
F1, F2 and P to deduce that

(2a− r)2 = r2 + 4c2 − 4cr cos θ (ellipse or hyperbola case 1)

(2a− r)2 = r2 + 4c2 + 4cr cos(π − θ) (hyperbola case 2).

But since cos(π − θ) = − cos θ these are the same and we have

Letting p = a2−c2

a and e = c
a we say that the equation of the ellipse

in polar coordinates is

r = p

1 − e cos θ . (3.7)

The parameter e is called the eccentricity of the curve and notice that Wikipedia: eccentricity
for an ellipse 0 ≤ e < 1, whilst for a hyperbola e > 1. In particular, if
e = 0 then c = 0 and C is a circle.
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3.3.2 Parabola

The derivation of polar coordinates for a parabola is slightly simpler
than for the other types of curve. In this situation we let the origin be
the focus O = F, and say that the θ = 0 direction is away from the
directrix. As in the algebraic expression we say that the distance from
focus F to directrix l is p.

O = F
l

P

p

r

p + r cos θ

θ

Figure 14: The radial distance r and angle θ for a point on an parabola.

Let P = (r, θ) be a point on a parabola C. The distance from P to
the directrix is p + r cos θ. The distance between P and F is simply r.
Thus we have

r = ⇒

Notice that this matches equation (3.7) with e = 1, which is exactly the
value of the eccentricity that we were missing.

Proposition 3.9 Let C be an conic section. There exists a polar co-
ordinate system (r, θ) of A2 with origin a focus point, and parameters
p, e ∈ R with e ≥ 0 such that

C =
{

(r, θ) ∈ A2 | r = p

1 − e cos θ

}
. (3.8)

Moreover, e is called the eccentricity (see Figure 15) and

e = 0 ⇒ C is ;
0 < e < 1 ⇒ C is ;
e = 1 ⇒ C is ;
e > 1 ⇒ C is .

If C is a parabola then p is the distance between the focus and directrix.
If C is an ellipse (including a circle) or a hyperbola then the distance
between focus points is |2c|, and the defining distance of the curve is |2a|
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where

a = p

1 − e2 c = pe

1 − e2 . (3.9)

e = 0 e = 1
2 e = 3

4 e = 9
10 e = 6

5 e = 4
3 e = 2

Figure 15: The conic sections shown with fixed distance 2a, and in order
of increasing eccentricity. The parabola (with e = 1) is not included as
this has “infinite” distance.

e = 1
5 e = 1

2 e = 3
4 e = 1 e = 3

2 e = 2

Figure 16: The conic sections shown with fixed focal parameter, p/e, and
in order of increasing eccentricity. The circle (with e = 0) is not included
as this has “infinite” focal parameter.

As a final remark to this section we address why ellipses, hyperbolas
and parabolas are called conic sections. This is because all these curves
are exactly given by the section of a cone passing through a plane. The
type of curve, is dependent on the gradient of the plane with relative to
the gradient of the cone. A plane with a smaller gradient intersects the
cone in an ellipse; a plane with an equal gradient intersects the cone in
a parabola; and a plane with a steeper gradient intersects the cone in a
hyperbola. See Figure 17.

Figure 17: The curves formed by a plane intersecting a cone. On the left
is a plane with a shallow gradient, giving an ellipse as its conic section.
In the middle the plane has an equal gradient to the cone and intersects
in a parabola. On the right the plane has a steeper gradient, producing
a hyperbola.
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4 Affine transformations

In this section we look at affine transformations; these are maps that
act on affine spaces in a similar way to linear operators acting on vector
spaces.

Definition 4.1 (Affine transformation) Let An be an affine space. A
function f : An → An is called an affine transformation if the followingWikipedia: affine transformation
properties hold for all P1,P2,Q1 and Q2 in An:

(1) the vectors P2 − P1 and Q2 − Q1 are if
and only if the vectors f(P2) − f(P1) and f(Q2) − f(Q1) are

;

(2) if (P2 − P1) = λ(Q2 − Q1) for some value λ ∈ R then

f(P2) − f(P1) = λ
(
f(Q2) − f(Q1)

)
.

Remark 4.2 Two vectors are linearly dependent if and only if they are
scalar multiples of one another, thus P2 − P1 and Q2 − Q1 are linearly
dependent if and only if the line segment from P1 to P2 is parallel to the
line segment from Q1 to Q2. Using this we can paraphrase the definition
as:

(1) line segments are if and only if their images under
f are ;

(2) the map f scales line segments by
amount.

Recall that to each affine space An, there is an associated vector
space En. Similarly, to each affine transformation of An there is an
induced linear operator acting on En.

Proposition 4.3 Let f : An → An be an affine transformation and let
O be a chosen origin in An. The induced map F : En → En given by

F (v) = f(O + v) − f(O)

is an linear operator of En, and is independent of the
choice of .
Proof. First notice that for any vectors v,w ∈ En and scalars λ, µ ∈ R
we have

(O + µw) − O = µw = (O + µw + λv) − (O + λv)

and so

f(O + µw) − f(O) = f(O + µw + λv) − f(O + λv).
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Furthermore, by condition (2) in Definition 4.1, for any vector v ∈ En

and scalar λ ∈ R we have

(O + λv) − O = λ ((O + v) − O)

⇒ f(O + λv) − f(O) = λ (f(O + v) − O)

We use this to show that the map is linear

F (λv + µw) = f(O + (λv + µw)) − f(O)

=
(
f(O + λv) − f(O)

)
+
(
f(O + λv + µw) − f(O + λv)

)
=
(
f(O + λv) − f(O)

)
+
(
f(O + µw) − f(O)

)
= λ

(
f(O + v) − f(O)

)
+ µ

(
f(O + w) − f(O)

)
= λF (v) + µF (w).

To see that the map is independent of the choice of origin we note
that for any P ∈ An

(P + v) − P = v = (O + v) − O

and hence

f(P + v) − f(P) = f(O + v) − f(O) = F (v)

Finally, to see that the map is invertible we need only show F (v) = 0
implies v = 0, and then appeal to the rank-nullity theorem. This is clear
from the Definition 4.1 (2) since

v = (O + v) − O ̸= 0 and F (v) = f(O + v) − f(O) = 0

is forbidden.

The only additional information required to recover the affine trans-
formation from its induced linear operator is the image of a single point,
usually the origin: O 7→ O + r.

Proposition 4.4 Let f : An → An be an affine transformation. Let F
be the induced linear operator defined in Proposition 4.3. Fix any point
O ∈ An and let O′ = f(O) be its image under f . The map f can be
expressed in terms of F and O′ by
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Proof. This is immediate from the definition of F since

F (P − O) = f(P) − f(O) = f(P) − O′.

It is now clear that having fixed any origin O for affine space, an
affine transformation can be expressed in terms of a linear operator
together with a translation of the origin. Conversely, given any invertible
linear operator and a translation we can construct an associated affine
transformation. This leads to an alternative definition:

Alternative Definition 4.5 (Affine transformation) A map
f : An → An is called an affine transformation if there is a point O ∈ An

(the origin), a translation vector r and an linear op-
erator F : En → En such that for any point P ∈ An

f(P) =

Example 4.6 The affine transformation f is made up of a rotation
about O by 3π

4 radians and a translation by r = −3y. The movement
of the white king is indicated in the diagrams.
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Example 4.7 If we express the map f from Example 4.6 with respect
to a different origin, the linear map R 3π

4
remains the same but we must

change the translation. For example, if O′ = O + 2x + 2y is the new
origin then we must instead translate by the vector s = −2

√
2x − 3y.

The movement of the previous origin O is indicated in the diagrams.
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Proposition 4.8 An affine transformation f : A2 → A2 is determined
by the image of any non-collinear points.
Proof. Let O, P1 and P2 be three points that do not lie on the same line.
Let e1 = P1 −O and e2 = P2 −O, so that B = (e1, e2) is a basis for E2.
Any linear operator is determined by the image of a basis, therefore the
linear operator F , induced by f is determined by F (e1) = f(P1)−f(O)
and F (e2) = f(P2)−f(O). Now we can use the fact that f is determined
by F and a translation, which we can determine using the image of any
of our three points.

4.1 Matrix of an affine transformation

Just as we have matrix representations of a linear operator, which make
calculations convenient, we can define a matrix representation of an
affine transformation. Instead of the matrix being defined with respect
to just a basis, we also need to pick an origin for the representation. The
pair of a basis and an origin is called a frame for the affine space.

Definition 4.9 (Frame) Let An be affine space and let En be its asso-
ciated Euclidean vector space. We call any pair F = (B,O), consisting
of a basis B of En, together with a point O ∈ An a frame for An. Wikipedia: frame

Example 4.10 A Cartesian coordinate system of An is a frame in
which the basis is orthonormal.

A frame is convenient as it allows us to represent both points and
vectors in column vector notation. We do this by adding an additional
entry (row) to our vectors that is 0 in the case of vectors and 1 in the
case of points.

Definition 4.11 (Vectors and points with respect to a frame) Let
An be an affine space and En its associated vector space. Let
F =

(
(e1, . . . , en),O

)
be a frame for An. Let v = v1e1 + · · · + vnen be

a vector in En and let P = O + v be a point of An. Then we denote v
and O with respect to the frame F by

[v]F =



v1

v2
...
vn

0


=

[v]B
0

 and (P)F =



v1

v2
...
vn

1


=

[v]B
1

 . (4.1)

Note that the choice of bracket is simply an additional aid to help
distinguish points from vectors and is not of practical importance.

Definition 4.12 (Matrix of a affine transformation) Let f : An → An

be an affine transformation and F = (B,O) be a chosen frame for the
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affine space, with B = (e1, . . . , en). Let F : En → En be the induced
linear operator of f and F (ei) = a1,ie1 + · · · + an,ien for each basis
vector ei in B. Let f(O) = O + b, where b = b1e1 + · · · + bnen.

Then the (augmented) matrix representation of f with respect to FWikipedia: (augmented) matrix
representation of f with respect
to F

is

[f ]F =



a1,1 a1,2 . . . a1,n b1

a2,1 a2,2 . . . a2,n b2
...

... . . . ...
...

an,1 an,2 . . . an,n bn

0 0 . . . 0 1


=
[

[F ]B [b]B
0 · · · 0 1

]
. (4.2)

Note that the dividing lines in the matrix are not strictly necessary
and are included for illustrative purposes. These lines will be dropped
in most situations.

Notice that, just as with the matrix of a linear operators, matrix
multiplication takes the place of applying the either of the maps f or F .

Remark 4.13 Multiplication of the matrix representation of f with a
vector is equivalent to applying the linear operator F to the vector: let
w =

∑
wiei ∈ En be a general vector. Then

[f ]F [w]F =



a1,1 a1,2 . . . a1,n b1

a2,1 a2,2 . . . a2,n b2
...

... . . . ...
...

an,1 an,2 . . . an,n bn

0 0 . . . 0 1





w1

w2
...
wn

0


=
[

[F ]B [w]B
0

]

=
[

[F (w)]B
0

]
= [F (w)]F .

Remark 4.14 Multiplication of the matrix representation of f with
a point is equivalent to applying the affine transformation to the point:
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let P = O + w = O +
∑
wiei ∈ An be a general point. Then

[f ]F (P)F =



a1,1 a1,2 . . . a1,n b1

a2,1 a2,2 . . . a2,n b2
...

... . . . ...
...

an,1 an,2 . . . an,n bn

0 0 . . . 0 1





w1

w2
...
wn

1


=
(

[F (w)]B + [b]B
1

)
= (f(P))F .

Example 4.15 The affine transformation f , of Example 4.6 was given
with respect to a basis B = (x,y) and an origin O. Let F = (B,O) be
the frame determined by these data and recall that f was given by a
rotation of 3π

4 about O followed by a translation by −3y. What is the
matrix of f with respect tot he frame F?
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