
Week 8

2.5 Integration of 1-forms over curves

In Subsubsection 2.3.2, we showed how 1-forms could arise as the differ-
ential of a 0-form. Intuitively, we should also have an inverse operation
that allows us to integrate a 1-form. This is precisely what we consider
in this section.

We shall only consider integration of 1-forms over curves. The reason
for this is a 1-form ω requires a point P and a tangent vector v to give
back a real number ω(P,v). Curves with a parametrisation have all this
information, as each point has a velocity vector already associated to it.

Let ω = g1dx1 + · · · + gndxn be a 1-form and γ : [a, b] → An a
parametrisation of a curve C. We can apply ω to the parametrisation γ

by evaluating at the point γ(t) with velocity vector γ′(t):

ω(γ(t),γ′(t)) =
n∑

i=1
gi(γ(t))dxi(γ′(t))

=
n∑

i=1
gi(γ(t))γ′

i(t).

Note that if ω = df is exact, this is the directional derivative of f at
γ(t) in the direction of the velocity vector γ′(t).

Definition 2.53 (Integration of 1-form over curves) Let ω = g1dx1 +
· · ·+gndxn be a 1-form and γ : [a, b] → An a smooth, regular parametri-
sation of C. The integral of ω over C is Wikipedia: integral of ω over C

(2.21)

Remark 2.54 The same definition holds if our curve is defined over
an open interval (a, b), as removing a finite number of points from the
curve does not impact the integral.
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Example 2.55 Consider the 1-form ω = xdx+ ydy and the curve

C =
{(

x

y

)
∈ A2 | y = x2 , 0 < x < 1

}
.

Compute the integral
∫

C
ω.

We have computed lots of parametrisations of C, so a natural ques-
tion is how does this integral change if we change the parametrisation?
The following theorem shows that if we fix the orientation of C, the
value of the integral does not change.

Theorem 2.56 Let C be an oriented curve. The integral
∫

C
ω does

not depend on the parametrisation of C.

Let C ′ be the curve C with the opposite orientation. Then

Example 2.57 The first part of Theorem 2.56 states the value of
∫

C
ω

does not change if we reparametrise C while preserving orientation. We
shall verify this for the curve C and the 1-form ω from Example 2.55.

We consider another parametrisation of C,

γ3 :
(

0, π2

)
→ A2

t 7→

(
sin t
sin2 t

)
, γ′

3(t) =
[

cos t
2 sin t cos t

]
.

Do we get the same value of
∫

C
ω?
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Example 2.58 The second part of Theorem 2.56 states that if we
consider the integral C with the opposite orientation, we just need to
flip the sign on the value of the integral. Again, we shall verify this for
the curve C and the 1-form ω from Example 2.55.

Consider another parametrisation of C:

γ4 : (0, 1) → A2

t 7→

(
1 − t

(1 − t)2

)
, γ′

4(t) =
[

−1
2t− 2

]
.

Do we get the opposite value of
∫

C
ω?

2.6 Integrating exact 1-forms

When we defined exact 1-forms, we noted that they would be particularly
nice when it came to integrating them. The following theorem is the
reason for this:

Theorem 2.59 Let ω = df be an exact 1-form and C a curve in An.
The integral of ω over C depends only on the value of f at the endpoints
of C.

Page 69



Simon Peacock and Ben Smith MATH20222: Intro to Geometry

Explicitly, for a parametrisation γ : [a, b] → An of C, the integral of
ω over C

(2.22)
Proof. Recall that is ω = df is exact, then df(P,v) is just the direc-
tional derivative of f at P along v. In particular, df(γ(t),γ′(t)) is the
directional derivative along f along γ. Therefore∫

C

df =
∫ b

a

df(γ(t),γ′(t))dt =
∫ b

a

Dγ′fdt =
∫ b

a

d
dt (f(γ(t)))dt

=
∫ b

a

f(γ(t)) = [f(γ(t))]ba = f(γ(b)) − f(γ(a)).

Example 2.60 If we reconsider the 1-form from Example 2.55, we
have already seen that this is an exact 1-form whose corresponding
0-form is f = x2+y2

2 . Considering the curve C from the same example,
what is

∫
C
ω?

Remark 2.61 As the integral of exact 1-forms depends only on the
endpoints, we do not care what path the curve takes between those
endpoints, it will have no impact on the value of the integral.

We call a curve closed if its endpoints are the same point. For exam-Wikipedia: closed
ple, circles and ellipses are both closed curves, as are any deformations
of them. Exact forms are even easier to integrate over closed curves.

Corollary 2.62 If C is a closed curve and ω an exact 1-form, then∫
C
ω = .

Proof. As C is closed, its endpoints γ(a),γ(b) are equal and so f(γ(a)) =
f(γ(b)) for any 0-form f . Using this and Theorem 2.59, we have∫

C

ω = f(γ(b)) − f(γ(a)) = 0.
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3 Conic sections

In this section we consider very important curves that you have no doubt
encountered before: ellipses; hyperbolas; and parabolas. We will begin
with the geometric definitions of these curves, we will follow this with the
algebraic definitions in terms of both Cartesian and polar coordinates.
These curves can all be realised as sections of a cone and are there-
fore collectively known by the name conic sections, see Figure 17. We
will revisit conic sections again in Section 5 when we review projective
geometry, giving a more modern perspective on these curves.

3.1 Geometric definitions

Geometrically we define an ellipse or hyperbola, as the locus of points
that satisfy some geometric condition with respect to a pair of points
called the foci (or sometimes focuses) of the curve. Similarly, we define
a parabola as the locus of points that satisfy a geometric condition with
respect to a single focus and a line called the directrix.

The following geometric definitions take place in affine space. Recall
that for a point P in An and a vector v ∈ En we can add the vector
to the point to get a new point in affine space: P + v ∈ An. In fact,
for each pair of points P,Q ∈ An there is a unique vector v ∈ En such
that P + v = Q. Thus, although there is no addition of points in affine
space, there is a concept of subtraction. The notation Q − P, is really
a shorthand meaning: “the vector v for which P + v = Q”.

The definitions that follow involve distances between points in affine
space. As there is a unique vector from P to Q, we use this vec-
tor to define the distance between points. Using the idea of subtrac-
tion of points above, we can denote the distance between P and Q as
∥Q − P∥ = ∥P − Q∥.

Definition 3.1 (Ellipse in the affine plane, see Figure 8) Let F1 and
F2 be two points, called foci, in the affine plane A2 and let c ∈ R be Wikipedia: foci
half the distance between the two foci: ∥F2 − F1∥ = 2c.

Then for each constant a > c ≥ 0 we define the ellipse with foci F1, Wikipedia: ellipse
F2 and with distance 2a to be the set of points P, such that the sum of
the distances of P to each focus is 2a:

Ellipse = (3.1)

If F1 and F2 are the same point then this is simply the circle with centre
F1 and radius a.

Remark 3.2 Notice that if we allowed a = c, then this definition would
degenerate to the line segment from F1 and F2; whilst with a < c, no
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F1 F2

P

F1 − P F2 − P

2c

∥F1 − P∥ + ∥F2 − P∥ = 2a

Figure 8: An ellipse with foci F1 and F2 and distance 2a.

points would satisfy the condition.

Definition 3.3 (Hyperbola in the affine plane, see Figure 9) Let F1

and F2 be two points in the affine plane A2, and let c ∈ R be half the
distance between the two foci.

Then for each constant a, with 0 < a < c, we define the hyperbolaWikipedia: hyperbola
with foci F1, F2 and with distance 2a to be the set of points P, such
that the absolute difference between the distances of P to each focus is
2a:

Hyperbola = (3.2)

F2F1

P′

F1 − P′
F2 − P′

P

F1 − P
F2 − P

2c

∥F2 − P′∥ − ∥F1 − P′∥ = 2a

∥F1 − P ∥ − ∥F2 − P ∥ = 2a

Figure 9: A hyperbola with foci F1 and F2 and distance 2a.
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Remark 3.4 Notice that if we allowed a = c then this would degener-
ate to the union of two half-lines: the first beginning at F1 and extending
infinitely away from F2; the second beginning at F2 and extending in-
finitely away from F1. On the other hand, if we allowed a = 0 then this
would degenerate to the perpendicular bisector of the line from F1 to
F2.

Definition 3.5 (Parabola in the affine plane, see Figure 10) Let F be
a point, called a focus, in the affine plane A2, and let l be a line, called
the directrix.

Then we define the parabola with focus F and directrix l to be set Wikipedia: parabola
of points P, such that the distance between P and F is equal to the
distance between P and l. Denoting the closest point on the line l to
the point P by lP we have

Parabola = (3.3)

F

l

PlP

F − P

lP − P

∥F − P∥ = ∥lP − P∥

Figure 10: A parabola with focus F and directrix l.

3.2 Algebraic definitions

In this section we will give algebraic expressions for ellipses, hyperbo-
las and parabolas. In order to give these expressions we must use a
coordinate system for affine space; initially we will restrict ourselves to
Cartesian coordinates. Recall from Example 2.4 that we can specify a
Cartesian coordinate system by selecting a point O ∈ An, called the
origin, and selecting an orthonormal basis (e1, . . . , en) for En.
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3.2.1 Expression for an ellipse

We shall first derive an equation for the ellipse. Let C be an ellipse
with foci F1,F2 ∈ A2 and distance 2a ∈ R. We first need to define a
Cartesian coordinate system: O, (ex, ey) (see Figure 11)

• Let the origin be the point half way between F1 and F2:

0 =

• Let the first basis vector be a unit vector in the same direction as
the vector from F1 to F2:

ex =

• Let ey be either of the unit vectors to ex.

O ex

ey

(−c, 0) (c, 0)

(x, y)

(x + c)ex + yey (x − c)ex + yey
xex + yey

cex

Figure 11: An ellipse shown against a Cartesian coordinate system.

Letting 2c be the distance between the two foci, we can express the
F1 and F2 using this coordinate system:

F1 = (−c, 0) F2 = (c, 0).

Let P = (x, y) be a point on the ellipse. Then by definition

2a = ∥P − F1∥ + ∥P − F2∥

=

=
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We have proved that every point on the ellipse satisfies the equation

. (3.4)

We now show the converse: that any point satisfying equation (3.4) lies
on the ellipse.

Let Q be the point with coordinates (x, y) and assume that these
values satisfy the identity of equation (3.4). Then

y2 = b2
(

1 − x2

a2

)
.

We wish to calculate the distances between Q and the foci F1 = (−c, 0)
and F2 = (c, 0). Recall that a2 = b2 + c2.

Page 75



Simon Peacock and Ben Smith MATH20222: Intro to Geometry

Now since 0 ≤ c < a and |x| < a we see that

∥Q − F1∥ = (3.5)

A similar process for the distance to F2 shows that

Putting this together we see that

∥Q − F1∥ + ∥Q − F2∥ =

Using the analysis above we come to the algebraic definition of an
ellipse.

Proposition 3.6 (Equation of an ellipse) Let C be a curve in A2. The
curve C is an ellipse if and only if there exists a Cartesian coordinate
system (x, y) of A2 and real numbers a ≥ b > 0 such that

C =
{

(x, y) ∈ A2 |
}
. (3.6)

Moreover, a ∈ R is exactly as in Definition 3.1; and if 2c is the
distance between the foci then b2 = a2 − c2.
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Just as we derived an expression for an ellipse in terms of a Cartesian
coordinate system we can do the same for hyperbolas and parabolas. We
leave the required analysis as an exercise in each case and merely present
the definitions.

Proposition 3.7 (Equation of a hyperbola) Let C be a curve in A2.
The curve C is a hyperbola if and only if there exists a Cartesian coor-
dinate system (x, y) of A2 and real numbers a > 0, b > 0 such that

C =
{

(x, y) ∈ A2 |
}
.

Moreover, a ∈ R is exactly as in Definition 3.3; and if 2c is the
distance between the foci then b2 = c2 − a2.

Proposition 3.8 (Equation of a parabola) Let C be a curve in A2. The
curve C is a parabola if and only if there exists a Cartesian coordinate
system (x, y) of A2 and a real number p > 0 such that

C =
{

(x, y) ∈ A2 |
}
.

Moreover, p ∈ R is the distance between the directrix and the focus.

It is useful to compile all the relevant details, which we do in the
following table.

Geometric Algebraic Parameters

Ellipse ∥F1 − P∥ + ∥F2 − P∥ = 2a x2

a2 + y2

b2 = 1
2c = ∥F2 − F1∥;

b2 = a2 − c2

Hyperbola |∥F1 − P∥ − ∥F2 − P∥| = 2a x2

a2 − y2

b2 = 1
2c = ∥F2 − F1∥;

b2 = c2 − a2

Parabola ∥F − P∥ = ∥lP − P∥ y2 = 2px p = ∥F − lF∥

Table 1: A comparison of the geometric and algebraic definitions of the
ellipse, hyperbola and parabola.
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