
Week 7

2.4 Curves in An

2.4.1 Definitions

Aside from points, curves are the simplest geometric objects we can
work with in affine space. This does not mean they are easy: even the
simplest objects have some real complexity to them!

We shall define curves via parametrisation. To do this, recall the
following notation for open/closed intervals:

(a, b) = {t ∈ R | a < t < b}

[a, b] = {t ∈ R | a ≤ t ≤ b}

[a, b) = {t ∈ R | a ≤ t < b}

In particular, we note that (−∞,+∞) = R.

Definition 2.31 (Curve) Let I ⊆ R be an interval of the real numbers.
A curve C in An is the image of a continuous map γ : I → An,Wikipedia: curve

C = {P ∈ An | ∃ t ∈ I such that P = γ(t)} . (2.14)

The map γ is a parametrisation for C.Wikipedia: parametrisation

When working in Cartesian coordinates, it will be convenient to write
our parametrisation maps as

γ(t) =

where each γi : I → R is a continuous map to the reals.

Example 2.32 Consider the parametrisation map

γ : [0, 2π) → A2

t 7→ (2.15)
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If we were to compute this parametrisation map, we’d see that the image
of γ is the circle of the radius a,

C =
{(

x

y

)
∈ A2 | x2 + y2 = a2

}
. (2.16)

Remark 2.33 The following viewpoint is helpful when considering
parametrisations of curves. If we consider the parameter t as “time”, we
can consider a parametrisation as a point moving along a path in space.
The curve is the path that is traced out by this point moving.

2.4.2 Reparametrisation and orientation

Curves may also be defined as a set of points that satisfy certain condi-
tions or equations. These are sometimes known as implicit curves. If we Wikipedia: implicit curves
want a parametrisation for these curves, we have to pick it ourselves.

Example 2.34 Consider the following curve in A2

C =
{(

x

y

)
∈ A2 | y = x2 , 0 < x < 1

}
.

x

y
C

Find a parametrisation for C.
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We would like a way to see when two parametrisation maps give
rise to the same curve. Furthermore, we would like a controlled way of
transforming one parametrisation into another. Both of these can be
accomplished via a reparametrisation map.

Definition 2.35 (Reparametrisation) Consider the parametrisations
γ1 : I1 → An and γ2 : I2 → An. We say that γ2 is a reparametrisation
of γ1 if there exists a bijective map φ : I1 → I2 such that
∀ t ∈ I1:

• ,

• .

We call φ a reparametrisation map.

The intuition we should have behind this definition is that φ “de-
forms” the time interval I1 into I2. The first condition states that this
deformation makes the two parametrisations equal, implying that they
must parametrise the same curve. The second condition states that this
deformation cannot “stop time” in one of the intervals, and will have
more implications when considering the orientation of curves.

Example 2.36 Recall the two parametrisations γ1,γ2 from Exam-
ple 2.34. These give rise to the same curve, and seem relatively well
behaved, so we expect γ2 to be a reparametrisation of γ1. Show that
γ2 is a reparametrisation of γ1.
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Example 2.37 We can introduce a third parametrisation of C via the
reparametrisation map

ψ :
(

0, π2

)
→ (0, 1)

t 7→

We define γ3 by deforming the parametrisation γ1 via ψ:

γ3 :
(

0, π2

)
→ A2

t 7→ γ1(ψ(t)) =

Note that γ3 is clearly a new parametrisation as its domain is a different
interval to γ1 and γ2.

Remark 2.38 In Example 2.37, as the map ψ goes between I3 to
I1, the reparametrisation process deforms γ3 into γ1. Therefore we
say that .
This may seem counterintuitive, as we had to define γ3 via γ1. We are
actually doing the following: as we know the behaviour of γ1 and as ψ
is bijective, we can look at its inverse to see what the behaviour of γ3

must be to deform into γ1.

If a curve has endpoints P,Q, a parametrisation can traverse the
curve either from P to Q or from Q to P. While these two parametri-
sations give rise to the same curve, it is helpful to distinguish that they
traverse the curve in opposite directions. This gives rise to the notion
of the orientation of a curve.

Definition 2.39 (Orientation of a curve) Let γ1 : I1 → An,
γ2 : I2 → An be parametrisations with a reparametrisation map φ : I1 →
I2.

• We say γ1,γ2 have the same orientation if .

• We say γ1,γ2 have the opposite orientation if .

An orientation of the curve C is an equivalence class of parametrisations Wikipedia: orientation
with the same orientation.

As with orientation of bases, the parametrisations of a curve with the
same orientation form an equivalence class. Picking a parametrisation
for a curve fixes its orientation: if we want to reparametrise and preserve
orientation then we must remain in this equivalence class.

Example 2.40 The parametrisations γ1,γ2 from Example 2.36 have
the same orientation as the reparametrisation map φ has positive deriva-
tive for all t ∈ (0, 1). Intuitively this makes sense, as they both begin at
the point ( 0

0 ) and end at the point ( 1
1 ).
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Consider another parametrisation γ4 of C defined by the
reparametrisation map ξ and deforming in γ1:

ξ : (0, 1) → (0, 1) γ4 : (0, 1) → A2

t 7→ 1 − t t 7→ γ1(ξ(t)) =
(

1 − t

(1 − t)2

)

Does it have the same or opposite orientation as γ1?

2.4.3 Differential properties of curves

To define the correct notion of a tangent vector and tangent space to a
curve, we need to go via velocity vectors.

Definition 2.41 (Velocity vector of a parametrisation) Let γ : I → An

be a parametrisation for a curve C. The velocity vector of γ at the point
γ(t0) is

γ′(t0) = γ′
i(t0) = (2.17)

Remark 2.42 The name velocity vector comes from the idea of a
parametrisation γ being a point moving through space. The velocity
vector γ′(t0) is precisely the velocity of the point at time t0.

Note that we can consider γ′(t) as a vector field on the curve that
assigns to every point γ(t0) its velocity vector γ′(t0).

Example 2.43 Recall the parametrisation γ of the circle with radius
a from Example 2.32,

γ : [0, 2π) → A2

t 7→

(
a cos t
a sin t

)
. (2.18)

What is the velocity vector of γ at time t?
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Figure 7: The velocity vectors of the parametrisation from Example 2.43.

A velocity vector is always tangent to the curve at that point. Sup-
pose we reparametrise C, what happens to the velocity vector at a point?
The magnitude of the velocity vector may change, but the direction (up
to sign) will stay the same.

Definition 2.44 (Tangent vector and space to a curve) A tan-
gent vector to C at P is a velocity vector γ′(t0) such that γ is a

of C and P = γ(t0).
The tangent space to C at P is the set TP (C) of tangent vectors to

C at P.

Note that TP (C) ⊂ TP (An): the tangent space to a curve is a
subspace of the tangent space to An. We shall always consider velocity
vectors in the tangent space to the curve it parametrises.

Example 2.45 Let C be the circle of radius a and the point
P = (−a, 0)T on it. Reconsider the parametrisation γ of C given in
equation (2.18). Is its velocity vector a tangent vector?

We consider a different parametrisation γ̃ of C via the reparametri-
sation map φ:

φ :
[
0, 2π

k

)
→ [0, 2π) γ̃ :

[
0, 2π

k

)
→ An

t 7→ kt t 7→ γ(φ(t)) =
(
a cos(kt)
a sin(kt)

)

where k ∈ R \ 0. Note if k < 0, then 2π
k < 0 and so we rewrite the

interval as
( 2π

k , 0
]
.
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Is γ̃ a tangent vector?

We can’t realise the zero vector
as via the reparametrisation map
φ as it is not defined for k =
0. However we can still find a
parametrisation of C which has
zero velocity at P.

While curves are some of the simplest geometric objects, they can
still get quite horrible to work with if we are not careful when picking
parametrisations.

Definition 2.46 (Smooth parametrisations and curves) Let γ : I → An

be a parametrisation for a curve. We say γ is smooth if every γi : I → R
is smooth, i.e., dkγi

dtk is well defined for all positive integers k and for all
t ∈ I.

A curve C is smooth if it has a smooth parametrisation.

Example 2.47 Consider the curve C from Example 2.34, but with the
endpoints included. Is the parametrisation of C

γ1 : [0, 1] → A2

t 7→

(
t

t2

)

smooth?

Is there (another) parametrisation of C that is not smooth?

Example 2.48 Consider the curve

C =
{(

x

y

)
| y = |x|

}
.

x

y C
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Is this curve smooth?

Definition 2.49 (Regular parametrisation) A parametrisation γ is
regular if γ′(t) for all t ∈ I.

Note that all curves we will consider will always have a regular
parametrisation. To define a curve with no reg-

ular parametrisation is difficult
and all known examples are not
natural!

Example 2.50 Consider the parametrisation

γ : [0, π] → A2

t 7→

(
sin t
sin2 t

)
, γ′(t) =

[
cos t

2 sin t cos t

]
.

This is a parametrisation for the curve C from Example 2.34, but with
the endpoints ( 0

0 ) and ( 1
1 ) included. Is this parametrisation regular?

Finally, we would like to know how a 0-form f changes as we follow
a curve.

Definition 2.51 (Directional derivative along a curve) Let C ⊂ An be
a curve with parametrisation γ. Let f : An → R a 0-form, the directional
derivative of f along γ is Wikipedia: directional derivative

of f along γ

Dγ′f = (2.19)

Recall that γ′ can be considered a vector field on C that assigns to
every point its velocity vector. The notation Dγ′f hints that this should
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be the directional derivative of f along the vector field γ′. As xi = γi(t),
we can use the chain rule to show this is true:

Dγ′f =

(2.20)

and so Dγf is just the directional derivative of f in the direction of the
velocity vector.

Remark 2.52 In general, the directional derivative along a curve is
sensitive to which parametrisation we pick. If we pick a parametrisation
that traverses the curve much “faster”, the magnitude of the velocity vec-
tors will be greater, therefore the directional derivative will be greater.
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