
Week 5

1.7.3 Area of a parallelogram

Axiom (VP-Len) states that the length of the vector product of two per-
pendicular vectors is given by the area of a rectangle bordered by the
pair. The following proposition generalises this to the area of the paral-
lelogram formed by two arbitrary vectors.

We shall represent the parallelogram formed by two vectors, v and
w, with the notation (v,w).

Proposition 1.87 The area of the parallelogram formed by the vectors
x and y is given by the length of their vector product, ∥x × y∥.

(1.35)

Proof. Consider the expansion y = y∥ + y⊥, where the vector y⊥ is
orthogonal to the vector x and the vector y∥ is parallel to vector x. The
area of (x,y) is equal to the product of the length of the vector x (the
base) and the length of vector y⊥ (the height).

On the other x × y = x × (y∥ + y⊥) = x × y∥ + x × y⊥. But
x × y∥ = 0, because these vectors are collinear. Hence x × y =
x × y⊥ = ∥x∥∥y⊥∥ because vectors x and y⊥ are perpendicular.

This proposition is very important in understanding the meaning of
the vector product. Succinctly, the vector product of two vectors is a
vector that is orthogonal to the plane spanned by these vectors, with
magnitude equal to the area of the parallelogram formed by the vectors.
The direction of the vector is defined by orientation.

It is worth recalling a formula relating the area of a parallelogram to
the length of its sides and the angle between them:

∥x × y∥ = (1.36)

Compare this to the formula we saw for inner products:

⟨x, y⟩ = ∥x∥∥y∥ cos θ. (1.7)

These two formulas demonstrate a fundamental property of the two dif-
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ferent products:

• The inner product is zero if the pair of vectors are
.

• The vector product is zero if the pair of vectors are
.

In fact equation (1.36) can be derived from equation (1.7) using the
identity ∥v × w∥2+⟨v, w⟩2 = ∥v∥2∥w∥2, which we prove in Lemma 1.88
below. Using this identity we have

∥x × y∥2 + ⟨x, y⟩2 = ∥x∥2∥y∥2

= ∥x∥2∥y∥2(sin2 θ + cos2 θ)

= ∥x∥2∥y∥2 sin2 θ + ⟨x, y⟩2
.

Eliminating the inner product from both sides and taking square roots
gives equation (1.36). Thus if we abstractly define angles using the inner
product formula, this is consistent with doing so with the vector product
formula.

Lemma 1.88 For a pair of vectors v and w in E3 the following
identity holds:

Proof. Fix an orthonormal basis B and let

[v]B =

v1

v2

v3

 and [w]B =

w1

w2

w3

 .
Using the determinant formula we have the following:We can be a little lazy with signs

in the proof since each determi-
nant is squared. ∥v × w∥2 = (det [ v1 v2

w1 w2 ])2 + (det [ v1 v3
w1 w3 ])2 + (det [ v2 v3

w2 w3 ])2

= (v1w2 − v2w1)2 + (v1w3 − v3w1)2 + (v2w3 − v3w2)2

= (v1w2)2 + (v1w3)2 + (v2w1)2

+ (v2w3)2 + (v3w1)2 + (v3w2)2

−2v1w1v2w2 − 2v1w1v3w3 − 2v2w2v3w3

Calculating the square of the inner product we have:

⟨v, w⟩2 = (v1w1 + v2w2 + v3w3)2

= (v1w1)2 + (v2w2)2 + (v3w3)2

+2v1w1v2w2 + 2v1w1v3w3 + 2v2w2v3w3
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Finally the square product of norms gives:

∥v∥2∥w∥2 = (v2
1 + v2

2 + v2
3)(w2

1 + w2
2 + w2

3)

= (v1w1)2 + (v2w2)2 + (v3w3)2

+ (v1w2)2 + (v1w3)2 + (v2w1)2

+ (v2w3)2 + (v3w1)2 + (v3w2)2

We can now see that ∥v × w∥2 + ⟨v, w⟩2 = ∥v∥2∥w∥2.

1.7.4 Area and determinants in E2

Let a and b be two linearly independent vectors in a 2-dimensional
Euclidean vector space, E2. We can consider the 2-dimensional space as
a in an oriented 3-dimensional Euclidean space, E3. Our aim
is to calculate the area of the parallelogram (a,b) formed by vectors
a and b. If we had selected the other unit

normal vector −n, the vector
product would still have been
proportional to n, however we
would need to replace α with −α.

Let n be a unit vector in E3 which is orthogonal to E2, chosen so
that the basis (a,b,n) has the same orientation as E3. Axiom (VP-⊥)
means that the vector product in a × b is proportional to the normal
vector n:

a × b = , where α is the area of (a,b).

Let (e, f) be an orthonormal basis for the plane E2, again chosen in the
order so that the orthonormal basis (e, f ,n) has the same orientation as
E3. This is equivalently to choosing (e, f) to have the same orientation
as (a,b). Let a = a1e + a2f and b = b1e + b2f . Then

a × b = det

 e f n
a1 a2 0
b1 b2 0

 = n det
[
a1 a2

b1 b2

]
(1.37)

Thus α = det
[ a1 a2

b1 b2

]
. If we had instead selected a basis with the op-

posite orientation, for example (f , e,n), we would instead have α equal
to the negative of the determinant. Thus if (e1, e2) is any orthonormal
basis for a 2-dimensional Euclidean space, with v = v1e1 + v2e2 and
w = w1e1 + w2e2 arbitrary vectors then

Area
(

(v,w)
)

=
∣∣∣∣∣det

[
v1 v2

w1 w2

]∣∣∣∣∣. (1.38)

Next we want to consider the action of a linear operator on the par-
allelogram formed by two vectors. We shall see in the next proposition
that for a linear operator acting on a 2-dimensional space, the determi-
nant of the linear operator controls how the area scales.
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Proposition 1.89 Let P : E2 → E2 be a linear operator, and let a
and b be vectors in E2. Denote the images under P by a′ = P (a) and
b′ = P (b). Then

Area
(

(a′,b′)
)

=
Proof. Fix a basis B = (e1, e2) for E2 and let

[a]B =
[
a1

a2

]
[b]B =

[
b1

b2

]
[P ]B =

[
p1,1 p1,2

p2,1 p2,2

]
.

We obtain the coefficients of a′ and b′ by multiplying the matrix by each
column vector. This together with equation (1.38) of the last section
gives:

Area
(

(a′,b′)
)

=
∣∣∣∣∣det

[
p1,1a1 + p1,2a2 p2,1a1 + p2,2a2

p1,1b1 + p1,2b2 p2,1b1 + p2,2b2

]∣∣∣∣∣
=
∣∣∣∣∣det

([
a1 a2

b1 b2

][
p1,1 p2,1

p1,2 p2,2

])∣∣∣∣∣
=
∣∣detPT∣∣ ·

∣∣∣∣∣det
[
a1 a2

b1 b2

]∣∣∣∣∣
= |detP | Area

(
(a,b)

)

1.7.5 Volume and determinants in E3

The vector product of a pair of vectors is related with area of the paral-
lelogram they form. We will now consider the parallelepiped formed by
three vectors.

Let a, b and c be three vectors in E3. We shall denote the paral-
lelepiped formed by these three vectors with the notation (a,b, c). We
may consider the parallelogram (b, c) as the base of the parallelepiped.
The height vector h, is now proportional to b × c (as it is perpendicular
to both b and c) and forms some angle θ, with a.

The volume of (a,b, c) is equal to the length of the height vector
h, multiplied by the area of the base, (b, c).

Let us express the vectors in terms of an orthonormal basis
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B = (e1, e2, e3) in the usual way:

[a]B =

a1

a2

a3

 , [b]B =

b1

b2

b3

 , and [c]B =

c1

c2

c3

 .
We can expand the inner and vector products using the chosen basis:

Putting these together we come to the beautiful formula:

Vol
(

(a,b, c)
)

= |⟨a, b × c⟩| =

∣∣∣∣∣∣∣det

a1 a2 a3

b1 b2 b3

c1 c2 c3


∣∣∣∣∣∣∣. (1.39)

Remark 1.90 Just as we remarked for the area of a parallelogram,
sometimes it is useful to consider the algebraic area of a parallelepiped
as either positive or negative. In this situation, we would define the
volume to be ⟨a, b × c⟩ without taking the absolute value. The sign
would then depend on the orientation of the vector space.

We can now state and prove a proposition for linear operators and
volumes in E3, analogous to Proposition 1.89 that considered areas and
operators in E2.

Proposition 1.91 Let P : E3 → E3 be a linear operators and let a,
b and c be vectors in E3. Denote the images under P by a′ = P (a),
b′ = P (b) and c′ = P (c). Then

Vol
(

(a′,b′, c′)
)

= (1.40)
Proof. The arguments in the proof of Proposition 1.89 can be applied,
mutatis mutandis, to the three dimensional case.

More succinctly (using detM = detMT) we can see that, having
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fixed an orthonormal basis B, the volume is given by

Vol
(

(a′,b′, c′)
)

=
∣∣∣det

[
[a′]B [b′]B [c′]B

]∣∣∣
=
∣∣∣det

(
[P ]B

[
[a]B [b]B [c]B

])∣∣∣
= |detP | Vol

(
(a,b, c)

)
.

2 Differential geometry

2.1 Affine space

Section 1 was entirely focused on vectors and vector spaces. However,
geometry often deals with spaces whose the elements are “points”. More-
over, we would like a space where both points and vectors can interact
with one another. This leads to the notion of affine spaces.

Definition 2.1 (Euclidean affine space) Let En be an n-dimensional
Euclidean vector space. A Euclidean affine space (associated with En)Wikipedia: Euclidean affine

space is a set of points An, along with an addition map that allows us to add
points with vectors

An × En → An

(P,v) 7→ P + v

such that

(1) ∀ v,w ∈ En,P ∈ An,

(2) ∀ P ∈ An,

(3) ∀ P,Q ∈ An, ∃ a unique v ∈ En such that

Note that as they behave differently, we denote points in uppercase
and vectors in lower case.

This definition may seem a bit abstract and unintuitive, but in fact
An behaves exactly how we expect Rn to behave when doing geometry.
We can add a point and a vector to get to a new point, we can add two
vectors to get a new vector, but we cannot add points together.

Remark 2.2 Unlike vector spaces, affine spaces do not come with a
fixed or . If we want to use one, we have
to make this choice.

Let An be a Euclidean affine space with associated vector space En

with orthonormal basis B = (e1, . . . , en). We wish to find a way to
describe the points of An. This leads to the notion of a coordinate
system on An.
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Definition 2.3 (Coordinate system) A coordinate system on An is a
surjective map Rn → An that assigns every n-tuple of real numbers to
a point P in An. Wikipedia: Coordinate system

Wikipedia: Coordinates in affine
space
In the definition of a coordinate
system, Rn is used without any
vector space structure: every ele-
ment is just a list of n real num-
bers.

Note that there are many different choices of coordinate system, but
we shall begin with the most natural choice, Cartesian coordinates.

Example 2.4 (Cartesian coordinates) We first pick some arbitrary
point O ∈ An to act as an “origin” of the space, as well as an orthonormal
basis B = (e1, . . . , en) for En. The Cartesian coordinate system assigns

Wikipedia: Cartesian coordinate
system

the n-tuple of real numbers (x1, . . . , xn) to the point

P = (2.1)

where v =
∑

i xiei is some vector in En. Note that by (3), there always
exists some vector v such that P = O + v, and so every point has some
n-tuple associated with it.

Once O and B have been fixed, the Cartesian coordinate representa-
tion of P is the column vector

P =


x1
...
xn

 . (2.2)

Unless stated otherwise, we shall work with Cartesian coordinates. Note
that we will use round brackets to denote that (2.2) represents a point
rather than a vector.

Remark 2.5 Example 2.4 leads to exactly the same notion of Cartesian
coordinates we are familiar with on Rn: we have a coordinate axes
spanned by B centered at the origin O. The only difference is we had to
explicitly choose O and B.

Remark 2.6 A warning about literature: many authors use Rn for
both the affine space and corresponding vector space. However this
can lead to confusion, and so we shall stick with An to emphasise the
difference with the vector space En.

Example 2.7 (Polar coordinates) We know that Cartesian coordinates
are not the only choice of coordinates in An. For example, we can define
polar coordinates on A2 in the following way. Fix an origin O ∈ A2 and Wikipedia: polar coordinates
an orthonormal basis (e1, e2), the tuple (r, θ) gets mapped to the point
P = O + v where v has magnitude r and angle θ with e1, i.e.,

r = , ⟨v, e1⟩ = .

However we can also describe polar coordinate by how it relates to Carte-
sian coordinates. In particular, if (x, y) is the Cartesian representation,
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it is related to polar coordinates via

x = r =

y = θ =

There are many more coordinate systems we may pick, however
the underlying geometry should stay the same regardless of our choice.
Therefore we shall work with Cartesian coordinates and show our meth-
ods hold for arbitrary choices of coordinates later.

Note Unless stated otherwise, we shall fix an origin O ∈ An and an or-
thonormal basis B = (e1, . . . , en) for En, and use Cartesian coordinates
on An with respect to O,B.

2.1.1 Tangent spaces

In vector spaces, all vectors began at the same point. This is not the
case with affine space, we have to specify which point a vector is based
at. This leads to the notion of tangent vectors and tangent spaces.

Definition 2.8 (Tangent vectors and tangent spaces) Let P be a point
in An. A tangent vector vP to An is a vector v ∈ EnWikipedia: tangent vector
at the point P ∈ An.

The tangent space of An at P is the set TP (An) of all tangent vectorsWikipedia: tangent space of An

at P vP to An beginning at P.

We first note that the tangent space TP (An) is a vec-
tor space, as adding and scaling vectors does not change their
base point. Furthermore, as we can add any vector in En

to a point P, the vector space TP (An) is a copy of En,
i.e., .

As TP (An) is a vector space, we can describe it with a basis. In
theory, we may pick a different basis BP for each tangent space TP (An),
and we shall see later that for some coordinate systems this is the correct
thing to do. However, as we are working with Cartesian coordinates on
An, we shall fix the same basis B = (e1, . . . , en) for every tangent
space TP (An). This allows us to write elements of TP (An) as column
vectors (with square brackets) as we did in En.

Remark 2.9 The name tangent vector and tangent space may seem
odd here, considering they don’t appear to be “tangential” to anything.
This connection will become more apparent when we define tangent
vectors to curves and surfaces.

Remark 2.10 When doing vector calculus in R3, you may have come
across the notation where tangent vectors are given by ai+bj+ck. This
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gives a vector of the tangent space: without knowing the point at which
the vector begins, it does not make sense on it’s own.

Finally, we make a quick note about functions on affine space. As
we are doing differential geometry, we want our functions to be as dif-
ferentiable as possible!

Definition 2.11 (Smooth functions) Let f be a real-valued function
on An

f : An → R
x1
...
xn

 7→ f(x1, . . . , xn).

We say f is smooth if every partial derivative of f exists, i.e., Wikipedia: smooth

exists for all ai ∈ Z≥0, a1 + · · · + an = a.

We won’t need to worry too much about this definition: all this
means for us is we are free to differentiate smooth functions as much
as we want and not worry about awkward issues such as whether a
derivative exists or not. For us, practically all the functions we will
work with will be smooth.
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