
Week 4

1.6.2 Orthogonal operators in E3 and rotations

In the previous section, we saw that the orthogonal operators of E2 that
preserved orientation were rotation operators. The main result in this
section will be Euler’s Rotation Theorem that shows the same holds in
E3. We will give the precise statement of Euler’s Theorem at the end of
this section. For now, we will just formulate a preliminary statement:

Theorem 1.75 An orthogonal operator in E3 that preserves orientation
is a rotation about an axis L by the angle φ.

We shall slowly build up this statement by precisely defining rota-
tions in E3 and how we can derive the axis and angle via standard linear
algebra techniques.

Recall that a linear operator on E2 is a rotation by φ if it is of the
form Pφ, see (1.22) and (1.23). The definition of a rotation is little bit
more subtle in E3. Explicitly, a rotation in E3 occurs around an .

Let n ̸= 0 be an arbitrary non-zero vector in E3. Consider the line

Ln = span(n) =

spanned by vector n. We say Ln is the axis directed along the vector n.

Note that Ln depends only on the of the vector n,
not the magnitude, i.e., Ln = Lλn for all λ ̸= 0. As a result, we shall
often consider the normalisation of n Wikipedia: normalisation

n̂ = n
∥n∥

, (1.27)

i.e., the unit vector in the direction of n. This will allow us to work with
an orthonormal basis.

Definition 1.76 Let P be a linear operator on E3, and B = (n̂, f ,g)
an orthonormal basis. We say P is a rotation about the axis Ln by the Wikipedia: rotation about the

axis
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angle φ if it acts on B as follows:

P (n̂) = (1.28)

P (f) = (1.29)

P (g) = (1.30)

i.e., the matrix representation of P in the basis B is

[P ]B = (1.31)

Let’s break down this definition and see what is happening geomet-
rically.

• (1.28) implies that P fixes all vectors on the axis Ln = Ln̂, as

P (λn̂) = λP (n̂) = λn̂

for any scalar λ ∈ R. Note that in linear algebra terms, this is
equivalent to n (and, by Lemma 1.55, any scalar multiple of n)
being an of P with .

• (1.29) and (1.30) state that if we restrict to the two dimensional
plane spanned by (f ,g), then P behaves exactly like a two dimen-
sional rotation and rotates the plane by the angle φ. As the basis
is orthonormal, this plane is orthogonal to n̂, and so the plane
rotates around the axis .

Recalling the definition of the trace of linear operator, we see from
(1.31) that

Tr(P ) = 1 + 2 cosφ (1.32)

where φ is angle of rotation. Recall by Proposition 1.50, that the trace
of P does not depend on the choice of basis. This formula determines the
cosine of the angle of rotation purely in terms of the operator rather than
its matrix with respect to a basis. Furthermore, as cos(φ) = cos(−φ) it
determines the angle of rotation up to sign.[P ]B is an orthogonal matrix,

therefore Proposition 1.58
implies P is orthogonal.
It preserves orientation as
detP = det [P ]B = 1

It is quick to check that P is orthogonal and preserves orientation.
Euler’s Theorem states that the converse is true: any orientation pre-
serving orthogonal operator of E3 is a rotation.

Theorem 1.77 (Euler’s Rotation Theorem) Let P be an orientation
preserving orthogonal operator of E3. Then P is a rotation around an
axis L by the angle φ.

Explicitly, the axis L is the one dimensional space of eigenvectors of
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P with eigenvalue , and the angle φ is determined up to sign by

Tr(P ) = 1 + 2 cosφ.

Not only does this theorem completely characterise which operators
define rotations, it tells us precisely what the geometry of that rotation is
using only linear algebra. Before we prove this, let’s consider an example
that demonstrates the power of Euler’s Theorem.

Example 1.78 Consider the linear operator P we saw in Example 1.56
that maps the orthonormal basis B = (ex, ey, ez) to

P (ex) = ey , P (ey) = ex , P (ez) = −ez. (1.33)

Is P an orientation preserving orthogonal operator? If so, what is the
angle of rotation?

Remark 1.79 The identity operator I that leaves everything fixed,
i.e.,

I(x) = x for all x ∈ E3

is an orthogonal operator that preserves orientation. However, intu-
itively we can see that I doesn’t rotate anything, and this is reflected
by Euler’s Theorem. As I(x) = x for all vectors, every vector is an
eigenvector with eigenvalue 1, and so in E3 could be
considered an axis of rotation. Furthermore, the trace of I is Tr(I) = 3,
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therefore the angle φ is zero.

The proof of the Euler’s Theorem has two parts: firstly that there
exists an axis that P leaves fixed, and secondly that P rotates the re-
maining vectors around that axis. We prove these in the following two
lemmas.

Lemma 1.80 Let P be an orientation preserving orthogonal operator
of E3. There exists an axis L such that P (x) = x for all x ∈ L.

Proof. If P has eigenvalue 1, then L is the one-dimensional space of
eigenvectors x with eigenvalue 1, i.e., P (x) = x. Therefore we show
that P has an eigenvalue 1.The polynomial CP (λ) =

det(λI − P ) is called the char-
acteristic polynomial of P . The
roots of this polynomial are
exactly the eigenvalues of P .
Wikipedia: Characteristic poly-
nomial

Recall from linear algebra that P has an eigenvalue λ if and only if
det(λI−P ) = 0, where I is the identity operator. Therefore it remains to
show that det(I −P ) = 0. We show this using many of the determinant
properties stated in Proposition 1.46.

det(I − P ) = det(P ) det(I − P ) (P preserves orientation)

= det(PT) det(I − P ) (detM = detMT)

= det(PT − PTP ) (detMN = detM detN)

= det(PT − I) (P orthogonal)

= det(PT − IT)

= det((P − I)T) (MT +NT = (M +N)T)

= det(P − I)

= − det(I − P ) (det(−M) = (−1)n det(M))

Therefore det(I − P ) = − det(I − P ) = 0 and so 1 is an eigenvalue of
P . By Lemma 1.55, the span of a corresponding eigenvector n forms a
fixed axis Ln.

Lemma 1.81 Let P be an orientation preserving orthogonal operator
of E3 that fixes an axis L. Then P is a rotation about the axis L by
some angle φ.

Proof. Pick a unit vector n̂ in L and pick an arbitrary orthonormal basis
(n̂, f ,g) with n̂ as the first basis vector. By Lemma 1.80 we know that
P (n̂) = n̂, we wish to show that

P (f) = 0 · n̂ + αf + βg, P (g) = 0 · n̂ + γf + δg, α, β, γ, δ ∈ R.

i.e., they have no n̂ component.
Suppose P (f) = µn̂ + αf + γg and consider the inner product
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⟨P (f), P (n̂)⟩. By inner product manipulation, we see that

⟨P (f), P (n̂)⟩ = ⟨µn̂ + αf + γg, n̂⟩

= µ⟨n̂, n̂⟩ + α⟨f , n̂⟩ + γ⟨g, n̂⟩

= µ

However, as P is orthogonal, we have ⟨P (f), P (n̂)⟩ = ⟨f , n̂⟩ = 0. There-
fore µ = 0 and P (f) has no n̂ component. A similar calculation holds
for P (g). As a result, the matrix of P is

[P ]B =

1 0 0
0 α β

0 γ δ


As the matrix is orthogonal and orientation preserving, we can repeat
the calculations as in (1.20) and (1.22) to show that

P (f) = f cosφ+ g sinφ, P (g) = −f sinφ+ g cosφ.

Therefore P is the rotation about the axis L by φ.

1.7 Area, volume and determinant

You may have seen before that the area of a parallelogram and the vol-
ume of a parallelepiped can be calculated in terms of the vector (cross)
product, which in turn is related to determinants. In this section we
will give a rigorous definition of the vector product and prove the link
to determinants. These formulas will help develop a geometrical under-
standing of the determinant of a linear operator.

1.7.1 Vector product in oriented E3

We begin with a formal definition of the vector product for an oriented
3-dimensional Euclidean vector space.

Definition 1.82 (Vector product) Let V = E3 be a 3-dimensional
oriented Euclidean vector space. A vector product (also known as a Wikipedia: vector product
cross product) is a map,

− × − : V × V → V

satisfying the following properties:

• The vector x × y ∈ V is orthogonal to x and y, that is

(VP-⊥)
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• The product is anticommutative:

(VP-AC)

• The product is linear:
(VP-Lin)

• For perpendicular vectors x and y, the length of the vector prod-
uct, x × y, is equal to the area of the rectangle formed by x and
y:

⟨x, y⟩ = 0 ⇒ (VP-Len)

• For linearly independent vectors x and y the basis

(x,y,x × y) has the same orientation as V . (VP-O)

Remark 1.83 As with the inner product (also known as scalar prod-
uct), we can use the anticommutativity of the inner product together
with linearity in the first variable to show linearity in the second variable:

z × (λx + µy) = −(λx + µy) × z

= −λ(x × z) − µ(y × z) = λ(z × x) + µ(z × y).

This means that the vector product is actually bilinear .Wikipedia: bilinear

Remark 1.84 Anticommutativity implies that (x × x) = − (x × x) so
the self product is always . Moreover, if x and y are not linearly
independent, so that for some λ we have y = λx, then the vector product
x × y is equal to:

x × y =

Remark 1.85 Axiom (VP-⊥) means that if x and y are linearly inde-
pendent then x × y is perpendicular to the plane spanned by x and y.
This implies that (x,y,x × y) is a basis.

Remark 1.86 The orientation of V is important: if W is the oriented
vector space that contains the same vector space as V but comes with
opposite orientation, then for vectors x and y, the basis (x,y,x × y) has
the same orientation as V by axiom (VP-O). This basis has the opposite
orientation to W and hence the vector product on W would give a vector
in the opposite direction, yet still perpendicular to both x and y.
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1.7.2 Existence and uniqueness of the vector product

At this point we have specified a list of axioms that a vector product
should satisfy, it is not yet clear that such a function need necessarily
exist. Our goal now is to both show that such a product exists and also
that the vector product is unique.

We shall begin by showing that if a vector product exists for the
oriented 3-dimensional Euclidean space V , then this product is unique.
Let us fix an orthonormal basis B = (e1, e2, e3) that shares the same
orientation as V . We assume that a vector product − × − exists for V
and may deduce the following facts:

ei × ei = ∀i ∈ {1, 2, 3} by Remark 1.84.

e1 × e2 = for some scalar λ by axiom (VP-⊥)

= by axiom (VP-Len)

= by axiom (VP-O).

Similarly, since the bases (e1, e2, e3), (e2, e3, e1) and (e3, e1, e2) all have
the same orientation:

e2 × e3 = and e3 × e1 = .

Finally by anticommutativity (axiom (VP-AC)) we know that

e2 × e1 = , e3 × e2 = , and e1 × e3 = .

The facts above mean that the axioms determine the value of the
vector product for any pair of elements in an orthonormal basis. From
this we can determine the value for any pair of vectors by bilinearity.
Explicitly, if v = v1e1 + v2e2 + v3e3 and w = w1e1 + w2e2 + w3e3 are
arbitrary vectors then bilinearity gives:

v × w = (v1e1 + v2e2 + v3e3) × (w1e1 + w2e2 + w3e3)

= v1w1(e1 × e1) + v1w2(e1 × e2) + v1w3(e1 × e3)

+ v2w1(e2 × e1) + v2w2(e2 × e2) + v2w3(e2 × e3)

+ v3w1(e3 × e1) + v3w2(e3 × e2) + v3w3(e3 × e3)

= (v2w3 − v3w2)e1 + (v3w1 − v1w3)e2 + (v1w2 − v2w1)e3

It is convenient to represent this formula in the following very familiar
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way:

v × w = (1.34)

At this point we have shown that the value of the vector product
for two arbitrary vectors is given by the determinant formula (1.34).
It remains to show that this formula satisfies all of the required ax-
ioms (VP-⊥) to (VP-O). The proof of this is left as an extended exercise
(see Exercise Sheet 4, Question 4).
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