
Week 3

1.5 Orientation of vector spaces

You may have heard the term orientation before. In particular, you may
have heard phrases such as:

The basis (a,b, c) has the same orientation as the basis
(a′,b′, c′) if they both obey right hand rule or if they both
obey left hand rule.

or

A mirroring image has the opposite orientation to its source.

In this section we try to give exact meaning to these ideas.

Definition 1.59 (Same/opposite orientation) Let B and C be two bases
for a vector space V and let T be the transition matrix from basis B to
basis C. Wikipedia: Orientation

We say that C has the same orientation as B if .
We say that C has an opposite orientation to B if .

Recall that a transition matrix between bases is nondegenerate, hence
its determinant cannot be equal to zero.

Example 1.60 The simplest example is that of a line, E, a 1-
dimensional vector space. Any non-zero element of E spans the space,
so let us consider the following three bases, each with a single element:

B = (2) C = (−8) D = (10)

Which basis have the same orientations and which have opposite orien-
tation?
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Example 1.61 Let us now consider a 2-dimensional example. Consider
the following two bases bases for E2

B =
([

1
0

]
,

[
0
1

])
C =

([
1
1

]
,

[
1

−1

])

Do they have the same or opposite orientation?

We shall denote “basis C has the same orientation as basis B” by the
notation B ∼ C.

Proposition 1.62 The relation ∼ is an equivalence relation on the set
of all bases for a given vector space. That is, ∼ is reflexive, symmetricWikipedia: Equivalence relation
and transitive.
Proof.
Reflexivity

The transition matrix of B to itself is the identity matrix, which has
positive determinant. Thus B ∼ B.

Symmetricity
Let B ∼ C and T be the transition matrix from B to C. The transition

matrix from C to B is then T−1. Now since det(T−1) = (detT )−1 and
detT > 0 we have that det(T−1) > 0 and so C ∼ B.

Transitivity
Let B ∼ C and C ∼ D and let

BTC be the transition matrix from B to C

CTD be the transition matrix from C to D

BTD be the transition matrix from B to D

We know that det BTC > 0 and det CTD > 0 and we need to establish that
det BTD > 0. By Lemma 1.41, BTD = BTC CTD therefore det(BTD) =
det(CTD) det(BTC), a product of two positive values and so B ∼ D.

Since orientation is an equivalence relation this means that the set
of all bases decomposes into a disjoint union of equivalence classes. Two
bases of a vector space have the same orientation if and only if there are
in the same equivalence class.

Example 1.60 shows that there are at least two orientation classes
in a 1-dimensional vector space. In general, for a space with di-
mension at least 2, one can show that the determinant of the transi-
tion matrix from the basis (e1, e2, . . . , en) to the basis (e2, e1, . . . , en),
with the first two vectors swapped, has determinant −1. This
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means that for all vector spaces there are always at least two equiv-
alence classes of bases: a and its

.
We want to show that these are the only two possibilities. That is,

there are exactly two orientation classes.

Proposition 1.63 Let B be a basis for a vector space V and let B′ be
a basis with an opposite orientation to B.

If C is a basis for V then either or .
Proof. Let T be the transition matrix from basis B to C and T ′ be the
transition matrix from basis B′ to C. Let S be the transition matrix
from B to B′.

If detT ′ > 0 then we are done, so let us assume that
detT ′ < 0. We have seen that T = ST ′ (Lemma 1.41) and therefore
detT = detT ′ detS. As B and B′ have opposite orientation then detS
is negative and we have assumed that detT ′ is also negative. This shows
that detT > 0 and therefore that B ∼ C.

Definition 1.64 (Orientation) An orientation of a vector space is an Wikipedia: orientation
equivalence class of bases under the equivalence relation ∼.

Note that any choice of basis B implicitly chooses an orientation: the
equivalence class of B under the relation ∼. The proposition above tells
us that there are two orientations, and that every basis has either the
same orientation as a fixed given basis or the opposite orientation to it.

We may pick an orientation and call it the left orientation and its
opposite the right orientation, though such a choice is arbitrary. A basis
with a left orientation is sometimes referred to as a left basis and a basis
with a right orientation is sometimes referred to as a right basis.

Definition 1.65 (Oriented vector space) An oriented vector space is a
vector space together with a choice of .

Example 1.66 Let (e, f) be a basis of a 2-dimensional vector space.
We shall say that (e, f) has a left orientation.

We will consider the bases (e,−f), (f ,−e) and (f , e). Which have
right orientations and which have left orientations?
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Of course if we had declared our initial basis to be a right basis, then
all terms left and right would have to be interchanged. The choice is
entirely arbitrary.

Example 1.67 Let {ex, ey, ez} be a basis of E3 and let

T =

be any 3 × 3 matrix with entries in R. Let a, b and c be defined by

a =

b =

c =

We have three cases:

detT > 0: In this case (a,b, c) is a basis and this basis has the
orientation as (ex, ey, ez).

detT < 0: In this case (a,b, c) is a basis and this basis has the
orientation to (ex, ey, ez).

detT = 0: In this case the set of vectors {a,b, c} are not linearly-
independent and hence do not define a . As such they
do not have an orientation.

Notice that since T was chosen arbitrarily, even if (a,b, c) is a basis
it need not be orthonormal.

Remark 1.68 The important message from this section is that there
exactly orientations of any real vector space. Given a basis as a
reference point, any other basis either has the same orientation or the
opposite orientation as this reference point.

If two bases B and C have the same orientation then one can trans-
form from one basis to the other via a continuous transformation. Mak-
ing this statement precise is beyond the scope of this course, however
we can demonstrate the point in E3. If B and C are orthonormal bases
of E3 with the same orientation then there is an axis v such that the
transformation of B to C is given by a rotation about v. This is Euler’s
Theorem and will be proved in Theorem 1.77.
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1.5.1 Orientation of linear operator

Let P be a linear operator acting on a vector space V and let
B = (e1, e2, . . . , en) be a chosen basis for V .

Consider the image of this basis PB = (Pe1, Pe2, . . . , Pen). If P is
nondegenerate then this is again a basis for V . We want to consider its
orientation. As we have already seen [P ]B is the same as the transition
matrix of B to PB. Thus we know that if [P ]B has positive determinant
then B and PB have the same orientation. If the matrix has a negative
determinant then the two bases have opposite orientations . If the determinant is zero, so P

is degenerate, then PB is not a
basis.

Since the determinant of P as a linear operator is defined to be the
same as the determinant of [P ]B as a matrix we can now say the follow:

• If a linear operator P has positive determinant then the action of
P the orientation of a basis.

• If a linear operator P has negative determinant then the action of
P the orientation of a basis to the opposite orientation.

Definition 1.69 Let P be a nondegenerate (invertible) linear operator
acting on a vector space V .

We say that P preserves the orientation of V if .
We say that P changes the orientation of V if .

1.6 Orthogonal operators of En

Recall the notion of orthogonal operator (see Subsubsection 1.4.4). In
this section, we shall consider orthogonal operators in E2 and E3. In
particular, we shall try to classify them and show how they relate to
geometric notions that we are familiar with: rotations and reflections.

1.6.1 Orthogonal operators in E2

In this section, we will show that an orthogonal operator in E2 induces
either a rotation or a reflection of E2, depending on whether it preserves
orientation or not.

Throughout, we let B = (e1, e2) be an orthonormal basis E2. Recall
that this implies

i.e., vectors e1, e2 have unit length and are orthogonal to each other.
Also recall that by fixing an ordering on the basis, we have fixed an
orientation on the basis and therefore the vector space. We shall call
this the orientation.
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Let P be an orthogonal operator acting on E2, i.e.,

⟨P (x), P (y)⟩ = ⟨x, y⟩ for all x,y ∈ E2.

Consider a new basis C = (f1, f2) defined by applying P to B:

f1 = P (e1) =

f2 = P (e2) =

By Proposition 1.58, as P is an orthogonal operator, this new basis C is
an orthonormal basis.

Because P is orthogonal, there are extra restriction on α, β, γ, δ ∈ R
we have not considered yet. Consider the matrix for P in the basis B:

[P ]B =

By Proposition 1.58, P is orthogonal if and only if [P ]B is an orthogonal
matrix: [

1 0
0 1

]
= ([P ]B)T[P ]B =

This gives us three extra constraints on what the entries of [P ]B could
be

(1.20)

Recall that and are
the equations that cut out a circle of radius one. As a result, we can
satisfy these equations immediately by picking angles φ,ψ and setting

(1.21)

The final constraint implies that

Observation 1.70 You may notice that we could have equally picked
α = sinφ, γ = cosφ (similarly for β, δ) and still satisfied the constraints.
However, this can be put in the form of equation (1.21) by picking a
different angle:

cos(π2 − φ) = cos(φ− π

2 ) = cosφ cos π2 + sinφ sin π2 = sinφ

sin(π2 − φ) = − sin(φ− π

2 ) = − sinφ cos π2 + cosφ sin π2 = cosφ

Therefore without loss of generality, we can always put α, β, γ, δ in the
form (1.21).
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Let us pause to reinforce what we have shown so far:

Lemma 1.71 Let B be an orthonormal basis and P a linear operator
of E2. Then P is an orthogonal operator if and only if its matrix [P ]B
can be written in the form

[P ]B =

and satisfies the constraint .

The condition cos(ψ − φ) = 0 only occurs when ψ − φ = π
2 + kπ for

some integer k ∈ Z. The geometry of P varies depending on whether
k is odd or even. This splits the orthogonal operators of E2 into two
classes:

(1) when ψ = for some m ∈ Z (k = 2m is
even),

(2) when ψ = for some m ∈ Z (k = 2m−1
is odd).

Case 1: Rotations in E2 We first consider the case where k is even.
Let k = 2m for some integer m ∈ Z. Then ψ = φ+ π

2 + 2mπ and so

cosψ = cos
(
φ+ π

2 + 2mπ
)

= cos
(
φ+ π

2

)
= − sinφ,

sinψ = sin
(
φ+ π

2 + 2mπ
)

= sin
(
φ+ π

2

)
= cosφ.

Therefore the orthogonal operator depends on a single parameter φ. To
emphasise this, we denote the operator Pφ and write its matrix as

[Pφ]B = (1.22)

Therefore, Pφ acts on an arbitrary vector x = x1e1 + x2e2 as follows:

[Pφ]B[x]B =

⇒ Pφ(x) = (1.23)

Note also that detPφ = det [Pφ]B = 1 and so Pφ preserves orientation.
What is the geometric behaviour of Pφ? You may recognise the

matrix (1.22) as a rotation matrix. Explicitly, if we apply the operator
Pφ to the vector x, it rotates x by the angle φ.

Example 1.72 Fix some orthonormal basis B = (e1, e2) for E2. Con-
sider the vector x = 2e1 + e2 and let φ = π

2 . What is the Pφ?
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You may notice that we have not addressed in this example whether
the rotation acts clockwise or anti-clockwise. These two notions do not
make sense in an arbitrary vector space: it is completely determined by
the of the vector space and therefore the ordering
of the basis. Explicitly, the rotation operator Pφ rotates the first basis
vector towards the second basis vector.

Figure 1 shows Example 1.72 for two different choices of basis. In
both cases, the rotation operator rotates x by π

2 radians in the direction
of e1 to e2.

e1

e2

e1

e2

x

Pπ

2
(x)

Pπ

2

e1

e2

x

e1

e2

Pπ

2
(x)

Pπ

2

Figure 1: The rotation operator Pπ
2

from Example 1.72 for two different
ordered bases. The operator rotates the vector x by π

2 radians in the
direction of e1 to e2.

Case 2: Reflections in E2 We now consider the case where k is odd.
Let k = 2m− 1 for some integer m ∈ Z. Then ψ = φ− π

2 + 2mπ and so

cosψ = cos
(
φ− π

2 + 2mπ
)

= cos
(
φ− π

2

)
= sinφ

sinψ = sin
(
φ− π

2 + 2mπ
)

= sin
(
φ− π

2

)
= − cosφ

Again, the orthogonal operator depends on a single variable φ. We
shall denote the operator Qφ and write its matrix as:

[Qφ]B = (1.24)
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By a similar calculation to (1.23), Qφ acts on an arbitrary vector x =
x1e1 + x2e2 as follows:

[Qφ]B[x]B =

⇒ Qφ(x) = (1.25)

Note that in this case, detQφ = det [Qφ]B = −1, and so Qφ does not
preserve orientation.

We saw that Pφ preserves orientation whereas Qφ doesn’t. How does
the geometry of Qφ compare to Pφ? To answer this, we introduce a new
linear operator R on E2 defined as follows:

R(e1) = e1 , R(e2) = −e2 ⇒ [R]B =
[

1 0
0 −1

]

R is the that sends e2 to −e2, or alternatively is the
reflection in the line spanned by e1. Recall from Example 1.66 that
this operator does not preserve orientation. Furthermore, by comparing
[Pφ]B and [Qφ]B we can deduce that Qφ is the composition of a rotation
and a reflection.

[Qφ]B =
[

cosφ sinφ
sinφ − cosφ

]
=
[

cosφ − sinφ
sinφ cosφ

][
1 0
0 −1

]
= [Pφ]B[R]B.

(1.26)

Example 1.73 Similar to the previous example, we fix some orthonor-
mal basis (e1, e2) for E2 and consider the vector x = 2e1 + e2. Let
φ = 0. What is Q0?

Page 31













































Simon Peacock and Ben Smith MATH20222: Intro to Geometry

e1

e1

e2

e1

e2

x

Q0(x)

Q0 = R

e2

Qπ

2
(x)

Qπ

2

Pπ

2

Figure 2: The reflections Q0 = R and Qπ
2

applied to the vector x from
Example 1.73. Note that Qπ

2
can be viewed as the reflection in the line

e1 + e2, or as the composition of R and Pπ
2
.

This completes a full characterisation of orthogonal operators in E2.
We recall what we have shown in the following proposition.

Proposition 1.74 Let P be an arbitrary orthogonal linear operator on
E2, then detP = ±1.

If detP = 1 then there exists an angle φ ∈ [0, 2π) such that P = Pφ

is the operator that a vector by φ.
If detP = −1 then there exists an angle φ ∈ [0, 2π) such that P =

Qφ is the operator that a vector by φ composed with a
.
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