
Week 1

1 Euclidean vector spaces

To begin doing geometry properly, we will need to recall quite a few
notions from linear algebra. Note that we will be recalling many results
from linear algebra, and therefore will not repeat proofs.

1.1 Vector spaces and basis vectors

1.1.1 Definition of a vector space

We denote the set of real numbers by R. Informally, we think of a vector
space as a set of vectors such that

• adding two vectors together gives us another vector in the vector
space,

• multiplying a vector by a real number (or scalar) gives another
vector in the vector space.

While we shall only be concerned
with vector spaces over the real
numbers in this course, in general
vector spaces can have scalars in
any field, e.g. Q,C,Fp, etc.

Definition 1.1 (Vector space) A vector space (over R) (V,+, ·) is a

Wikipedia: vector space

set of vectors, along with an addition operation + and a multiplica-
tion operation · satisfying the following axioms for all a,b, c ∈ V and
λ, µ ∈ R:

• (Additive closure) ,

• (Additive commutativity) ,

• (Additive associativity) ,

• (Zero) ∃0 ∈ V such that ∀a ∈ V, ,

• (Additive inverses) ,

• (Multiplicative closure) ,

• (Multiplicative associativity) ,

• (Distributivity) ,

• (Distributivity) ,
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• (Unity) .

Remark 1.2 We will denote vectors by writing them bold in the notes,
or underlining them when writing. This is particularly necessary when
we have to distinguish between 0, the real number, and 0, the zero
element of the vector space.

Example 1.3 The most natural example of a vector space (over real
numbers) is the space of ordered n-tuples of real numbers:

Rn =
{

(x1, x2, . . . , xn)T | x1, . . . , xn ∈ R
}

(1.1)

where (−)T denotes the transpose.
Let x, y ∈ Rn be two vectors where for x = (x1, . . . , xn)T,

y = (y1, . . . , yn)T, we define addition as

x + y =

and multiplication by scalars λ ∈ R as

λ · x =

Remark 1.4 When defining this vector space we have a choice between
row vectors and column vectors. Here, and throughout these notes, we
will use the convention of column vectors; this is chosen so that matrices
multiply on the left of vectors: Mx, mirroring the idea of functions being
denoted on the left: f(x).

1.1.2 Linear dependence

As vector spaces are closed under addition and scalar multiplication, we
will often want to consider linear combinations of vectors:

m∑
i=1

λixi = λ1x1 + λ2x2 + · · · + λmxm, (1.2)

where λi ∈ R are scalars (real numbers) and xi ∈ V are vectors from
the vector space V .

Definitions 1.5 (Linear dependence and independence) The vectors
{x1,x2, . . . ,xm} in vector space V are linearly dependent if there exist
m scalars λ1, . . . , λm ∈ R (not all equal to zero) such that

(1.3)

If the vectors are not linearly dependent, we say they are linearly inde-
pendent.Wikipedia: linearly independent
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Note We have to demand not all of our scalars be equal to zero, oth-
erwise (1.3) is true for every set of vectors.

There are a couple of equivalent definitions of linear independence
and dependence that can be more useful in practice. A set of vectors
{x1,x2, . . . ,xm} are linearly independent if and only if

The following proposition gives a useful definition of linear dependence.

Proposition 1.6 The vectors {x1,x2, . . . ,xm} are linearly dependent
if and only if at least one of these vectors can be expressed as a linear
combination of other vectors

xi =
∑
j ̸=i

λjxj , λj ∈ R

1.1.3 Basis and dimension of a vector space

As vector spaces are closed under addition of vectors, we would like to
find a small set of vectors such that we can write any vector as a linear
combination of vectors in this set. This leads to the notion of a basis.

Given a set of vectors x1, . . . ,xm ∈ V , we define their span to be Wikipedia: span
the set of all vectors that can be written as a linear combination of
x1, . . . ,xm, i.e.,

span(x1, . . . ,xm) = (1.4)

We say the vectors span V if span(x1, . . . ,xm) = V .

Definitions 1.7 (Basis and ordered basis) A set
of vectors {e1, . . . , en} ⊂ V form a basis of V if Wikipedia: basis

. A tu-
ple of vectors (e1, . . . , en) form an ordered basis if e1, . . . , en form a
basis as a set.

Example 1.8 Let V = R2 be a vector space and suppose we have the
following two vectors:

e1 =
[

1
1

]
, e2 =

[
0
2

]
.

Show that they form a basis.
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The difference between basis and ordered basis is a subtle, but im-
portant one. In a tuple, the order in which we list the element matters,
whereas order does not matter as a set. For example, the sets {e1, e2}
and {e2, e1} are the same, whereas the tuples (e1, e2) and (e2, e1) are
not the same.

The following theorem highlights why bases are hugely important
objects for describing vector spaces.

Theorem 1.9 A set of vectors {e1, . . . , en} form a basis for V if and
only if any vector x ∈ V can be expressed as a linear
combination

x =
n∑

i=1
λiei, λi ∈ R

Remark 1.10 The most important word in this theorem is
: there is precisely one expression for x. This does

not hold if our vectors are not linearly independent. If we take a set
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of vectors x1, . . . ,xm that span V , we can express any x ∈ V as some
linear combination

m∑
i=1

λixi = λ1x1 + · · · + λmxm = x.

However, if {x1, . . . ,xm} don’t form a basis, they must be linearly de-
pendent and so there exists some choice of scalars µi ∈ R such that

m∑
i=1

µixi = µ1x1 + · · · + µmxm = .

Now we can deduce
∑m

i=1 λixi is not a unique expression for x, as we
can write

We say “a basis” of a vector space rather than “the basis” as a vector
space has many different bases. However, every basis of a given vector
space has the same size: if {e1, . . . , en} and {f1, . . . , fm} are both a
basis of V , then n = m. This invariance is what leads to the notion of
dimension.

Definition 1.11 (Dimension) The dimension of a vector space V is Wikipedia: dimension
the size of a basis for V .

Example 1.12 (The canonical basis of Rn) Recall from (1.1) the vector
space

Rn =
{

(x1, x2, . . . , xn)T | x1, . . . , xn ∈ R
}
.

Consider the vectors e1, e2, . . . , en ∈ Rn:

e1 = e2 = e3 = · · · en = (1.5)

One can check that these vectors span Rn and are linearly in-
dependent, therefore they form a basis for Rn. For any vector
a = (a1, . . . , an)T ∈ Rn, we can express it as a linear combination of
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e1, . . . , en as follows:

a =

This basis is called the canonical basis of Rn: it is not the only choiceWikipedia: canonical basis
of basis, but it is the most natural due to how simple it is to express
vectors in it.

Remark 1.13 While all vector spaces we consider will be finite dimen-
sional, some vector spaces have a basis that consists of infinitely many
basis vectors. An example of an infinite-dimensional vector space is the
space of polynomials in one variable,

R[x] =

This is indeed a vector space and has the basis
. There are infinitely

many elements in this basis, therefore R[x] is infinite-dimensional.

Exercise 1.14 Check R[x] is a vector space and {1, x, x2, x3, . . . } is a
basis - do not be put off by the word infinite!

1.1.4 Change of basis and transition matrices

Vector spaces do not have a unique choice of basis, there are many choices
of basis. Furthermore, if we need to change from one basis to another,
we would like to do it in a controlled way. This is where transition
matrices are useful.

Let B = (e1, e2, . . . , en) be an arbitrary ordered basis of an n-
dimensional vector space V . Once this basis is fixed, we can represent
any vector x ∈ V as a column vector, or an n×1 matrix, in the following
way:

Note that it is very important that the basis be ordered to do this, as
the ordering is what determines which entry corresponds to which basis
vector.

Suppose we have an ordered set of n vectors C = (f1, . . . , fn) of V .
As B is a basis, we can write fi as
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We can concatenate these n column vectors together to get an n × n

matrix BTC :

The matrix BTC tells us how to represent the ordered set of vectors C in
terms of the basis B.

We would like to know when this new set of vectors C forms an
ordered basis. The following proposition states we can find this out
using only properties of BTC .

Proposition 1.15 Let B be an ordered basis for the n-dimensional
vector space V . An ordered set of n vectors C form an ordered basis of
V if and only if

Sketch of proof. This proposition is a consequence of the rank-nullity
theorem from linear algebra. Suppose the rank of BTC is less than n;
by the rank-nullity theorem this occurs if and only if the nullity of BTC

is greater than zero. This is equivalent to there being a nonzero vector
λ = (λ1, . . . , λn)T in the kernel of BTC , i.e.,

BTCλ = λ1f1 + · · · + λnfn = 0.

This gives a linear dependence on (f1, . . . , fn), therefore they do not
form a basis.

Recall that a matrix M such that det(M) ̸= 0 is called nondegenerate Wikipedia: nondegenerate
or nonsingular .

The transition matrix is also re-
ferred to as a change of basis ma-
trix.

Definition 1.16 (Transition matrix) The n × n nonsingular matrix
BTC that describes an ordered basis C = (f1, . . . , fn) in terms of the
ordered basis B = (e1, . . . , en) is called the transition matrix from B to Wikipedia: transition matrix
C.
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Example 1.17 Consider the matrix

T =

where λ ∈ R is an arbitrary parameter. Let (e1, e2, e3) be an ordered
basis of V . What ordered vectors does T map this ordered basis to? Is
it an ordered basis as well?

Remark 1.18 We stress the importance of considering B and C as
ordered bases: without the ordering, we do not know which vectors of
B get mapped to C. For example, the ordered bases B = (e1, e2) and
C = (e2, e1) of a 2-dimensional vector space V are equal as bases, but
not as ordered bases. The transition matrix that reverses the order is

BTC =

As ordering is key for working with transition matrices (and other ma-
trices later on), we will only consider ordered bases for the remainder
of the course. Therefore we shall mostly drop the prefix “ordered”. We
shall continue to use round brackets to denote a tuple or ordered set of
basis vectors, rather than a set.

1.2 Euclidean vector spaces

1.2.1 Inner products

Much of the geometry we learn at school is centred around distances
and angles. We can give vector spaces some additional structure so that
we have some notion of distance and angle. The key to this is an inner
product.

There is a more general defini-
tion of inner products for vector
spaces over other fields. As we
will only be interested in real vec-
tor spaces, we’ll stick with this
definition.

Definition 1.19 (Inner product) An inner product (or scalar product)

Wikipedia: inner product

on a vector space V (over R) is a function

⟨−, −⟩ : V × V → R

that maps two vectors to a scalar satisfying the following conditions for
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all x,y, z ∈ V and for all λ, µ ∈ R:

• (symmetry) ,

• (linearity) ,

• (positive-definite) .

Definition 1.20 (Euclidean vector space) A Euclidean vector space is
a vector space over R equipped with an inner product.

The connection between inner products and notions of distance and
angle is emphasised in the following example.

Example 1.21 The vector space Rn can be viewed as a Euclidean
vector space via the inner product

⟨x, y⟩ = (1.6)

This is sometimes called the canonical inner product, or the dot product. Wikipedia: dot product

Exercise 1.22 Check that the canonical inner product is an inner
product.

Example 1.23 Consider a 2-dimensional vector space V with basis
{e1, e2}. We define the inner product ⟨−, −⟩ such that ⟨e1, e1⟩ = 3,
⟨e2, e2⟩ = 5 and ⟨e1, e2⟩ = 0. What is the inner product for any two
vectors?

Example 1.24 Consider the following nonexample of an inner product
defined on V . We define ⟨−, −⟩ such that ⟨e1, e1⟩ = ⟨e2, e2⟩ = 0 and
⟨e1, e2⟩ =. Is this an inner product?

Page 9

https://en.wikipedia.org/wiki/Dot_product








































































Simon Peacock and Ben Smith MATH20222: Intro to Geometry

1.2.2 Geometry of Euclidean vector spaces

We’ll now use the definition of inner product to reconstruct certain geo-
metric concepts of Euclidean vector spaces. Throughout we let V be an
n-dimensional Euclidean vector space.

Let x ∈ V , we define the length (or magnitude) of x to be

∥x∥ = .

We remark that the formula for length does not depend on a choice
of basis: we can change basis freely and the length of a vector stay
the same. Note that when ⟨−, −⟩ is the dot product, our definition
of length agrees with the standard definition of length from Euclidean
geometry, i.e.,

The map ∥·∥ : V → R is an example of a norm, a way of definingWikipedia: norm
distance on a vector space. Length is called the Euclidean norm as itWikipedia: Euclidean norm
is the norm associated with Euclidean space. However, there are many
more ways of defining distance on a space, and so there are many more
norms one can define.

We can also use the inner product to define the angle between two
vectors x,y ∈ V . Explicitly, the angle θ between x,y is defined by

cos(θ) = (1.7)

In particular, we can use the inner product to quickly infer general be-
haviour about the angle:

• ⟨x, y⟩ > 0 if and only if θ is ,

• ⟨x, y⟩ < 0 if and only if θ is ,

• ⟨x, y⟩ = 0 if and only if x,y are orthogonal.Wikipedia: orthogonal
In the case of Euclidean vector
spaces, two vectors are orthogo-
nal if and only if they are perpen-
dicular : the angle between them
is a right angle. Orthogonality is
a generalisation of perpendicular-
ity to any vector space.
Wikipedia: Perpendicular

This last case will be of particular importance in the following section.
Similarly to length, setting ⟨−, −⟩ to the dot product recovers the

identity
x · y = ∥x∥∥y∥ cos(θ)

and so our definition of angle agrees with the standard definition from
Euclidean geometry.

Remark 1.25 As cos(θ) = cos(−θ), the inner product only defines
angles up to . The intuition behind this is there is no good
notion of what is a positive or negative angle. You may choose for
angles to be measured “clockwise”, but there is no good reason why
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you shouldn’t choose “anti-clockwise”. This issue will be dealt with in
Subsection 1.5 when we discuss the orientation of a vector space.
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