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5.3 Collinearity

In this section we consider what is meant by points in projective space
being collinear. Intuitively we want to say that if points are collinear in
affine coordinates then they are collinear in projective space. Let us con-
sider the projective plane P2, with points [x : y : z] and the affine chart
with non-zero final coordinate, with affine coordinates ( x

z ,
y
z ) = (u, v).

The general equation of a line in A2 is given by au+ bv+ c = 0 for some
real values a, b and c. A point [x : y : z] has affine coordinates on this
line if

which is true if

This second equation is the general equation for a plane in A3 that
passes through the origin. The same ideas hold in higher dimensions:
three points will be collinear in affine coordinates if the homogeneous
coordinates represent points on the same plane.

Definition 5.15 (Collinearity) We say that three points,
[x1 : x2 : · · · : xn+1], [y1 : y2 : · · · : yn+1] and [z1 : z2 : · · · : zn+1]
in Pn are collinear , or that they lie on the same projective line, if thereWikipedia: collinear
is a plane in An+1 that contains
the points (x1, . . . , xn+1), (y1, . . . , yn+1) and (z1, . . . , zn+1).

Recall that three arbitrary vectors support points on the same plane
if they are linearly dependent, this gives an alternative way to calcu-
late collinearity in P2. Three points [x1 : y1 : z1], [x2 : y2 : z2] and
[x3 : y3 : z3] are collinear if their associated vectors are linearly depen-
dent; or equivalently when

det

x1 x2 x3

y1 y2 y3

z1 z2 z3

 = 0.
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Example 5.16 Consider the points

A = [0 : −1 : 2], B = [−1 : 0 : 3], C = [2 : −4 : 2].

Are they colinear?

Consider now the point D = [2 : −3 : 0]. Are A, B and D colinear?

5.4 The cross ratio

Recall that the property preserved by affine transformations was the
ratio of lengths of collinear line segments. This means that if T is an
affine transformation and A, B and C are collinear points then

A − C
B − C = T (A) − T (C)

T (B) − T (C) . (5.3)

When we generalize to projective transformations, it is no longer true
that this ratio is preserved (see Example 5.21). The equivalent property
that is preserved for projective transformations is called the cross ratio
and involves a fourth point.

Definition 5.17 (Cross ratio) Let A, B, C and D be four collinear
points in affine space An. The cross ratio (A,B; C,D) is defined to be Wikipedia: cross ratio

(A,B; C,D) = (5.4)

By extension, the cross ratio of four collinear points in projective
space is the cross ratio of the four points in any affine chart.

Remark 5.18 Note that Definition 5.17 and equation (5.3) do not
make sense if the points are not collinear as we cannot divide arbitrary
vectors. This is only well defined when the vectors are parallel and
therefore multiples of one another.
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Example 5.19 Consider the following four points in P2:

A = [1 : 0 : 0], B = [1 : 1 : 1], C = [1 : 2 : 2], D = [1 : 3 : 3].

What is their cross-ratio?

It is not immediately clear that the cross ratio is well-defined for
projective points, however the following proposition deals with this issue.

Proposition 5.20 Let A, B, C and D be four collinear points in Pn

and let T : Pn → Pn be a projective transformation. Then the cross ratio
of the four points is preserved by T :

(A,B; C,D) =
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In particular, the cross-ratio is independent of the choice of affine
chart.
Proof. We prove the result for P1.

Let A, B, C and D be (collinear) points of P1 and let T : P1 → P1

be the projective transformation:

[x : y] T7−→[αx+ βy : γx+ δy].

After possibly changing basis we can assume that all the points lie in
the second affine chart and we have the map of affine coordinates

u
T7−→ αu+ β

γu+ δ
.

Let uA, uB, uC and uD be the affine coordinates of the points in this
affine chart. The cross ratio of the images of the points is now

(T (A), T (B);T (C), T (D))

=

(
αuA+β
γuA+δ − αuC+β

γuC+δ

)(
αuB+β
γuB+δ − αuD+β

γuD+δ

)
(

αuB+β
γuB+δ − αuC+β

γuC+δ

)(
αuA+β
γuA+δ − αuD+β

γuD+δ

)
=

(
(αuA+β)(γuC+δ)−(αuC+β)(γuA+δ)

(γuA+δ)(γuC+δ)

)(
(αuB+β)(γuD+δ)−(αuD+β)(γuB+δ)

(γuB+δ)(γuD+δ)

)
(

(αuB+β)(γuC+δ)−(αuC+β)(γuB+δ)
(γuB+δ)(γuC+δ)

)(
(αuA+β)(γuD+δ)−(αuD+β)(γuA+δ)

(γuA+δ)(γuD+δ)

)
=

(
(αδ−βγ)(uA−uC)
(γuA+δ)(γuC+δ)

)(
(αδ−βγ)(uB−uD)
(γuB+δ)(γuD+δ)

)
(

(αδ−βγ)(uB−uC)
(γuB+δ)(γuC+δ)

)(
(αδ−βγ)(uA−uD)
(γuA+δ)(γuD+δ)

)
= (uA − uC) (uB − uD)

(uB − uC) (uA − uD)
= (A,B; C,D).

In higher dimensions we can use the fact that collinear points are
all in 1-dimensional subspace equivalent to P1 and use the proof above.
This makes sense geometrically, however to make this rigorous would The alternative approach in

higher dimensions is to rearrange
some even more tedious equa-
tions, which the author (and
likely the reader) would rather
avoid doing.

require more technically details than we wish to cover.

Example 5.21 Consider the projective transformation T : P2 → P2

given by the matrix 0 1 0
1 0 1
0 0 1

 .
Does the projective transofmration preserve ratio of distances? Does it
preserve the cross ratio?
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5.5 Projective transformations of conic sections

We proved in Theorem 4.20 that affine transformations map ellipses
to ellipses, hyperbolas to hyperbolas and parabolas to parabolas, but
that we cannot map one type of conic section onto another. Projective
transformations do not have this limitation. In this section we will prove
that we map different types of conic section onto one another via
projective transformations.
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Consider the set of points in the projective plane

D =
{

[x : y : z] ∈ P2 | x2 + y2 = z2} ⊂ P2.

When restricted to the third affine chart, D just becomes the unit circle:

D ∩ A2
3 = ⊂ A2.

The following theorem shows we can map the unit circle to any other
conic section given the correct choice of projective transformation.

Theorem 5.22 For any conic section C ⊂ A2, there exists a projec-
tive transformation T : P2 → P2 such that C is T (D) restricted to the

affine chart.

Proof. We split this into cases for each type of conic section.

Ellipse: The case of an ellipse has already been covered. A special
case of Proposition 4.16 shows that the affine transformation

(u, v) 7→ (au, bv)

maps the unit circle to the ellipse with equation u2

v2 + y2

b2 = 1. As a
projective transformation, this is

[x : y : z] 7→ [ax : by : z].

Hyperbola: Let C be the hyperbola described by the equation 1 +
v2

b2 − u2

a2 = 0. Define the projective transformation

T : [x : y : z] 7→ [az : by : x].

For a point P = [x : y : z] ∈ D, let T (P) = [x′ : y′ : z′] = [az : by : x]
where

x = z′, y = y′

b
, z = x′

a
.

The point P ∈ D satisfies the equation x2 + y2 − z2 = 0 if and only if
T (P) satisfies the equation

0 = z′2 +
(
y′

b

)2
−
(
x′

a

)2
.

Restricting to the third affine chart, we see this is the equation of the
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hyperbola C:

0 = z′2

z′2 + y′2

b2z′2 − x′2

a2z′2

= 1 +

(
y′

z′

)2

b2 −

(
x′

z′

)2

a2

= 1 + v2

b2 − u2

a2 .

Parabola: Let C be the parabola described by the equation v2 −
2pu = 0. Define the projective transformation

T : [x : y : z] 7→ [z − x :
√

2py : z + x].

For a point P = [x : y : z] ∈ D, let T (P) = [x′ : y′ : z′] = [z − x :
√

2py :
z + x] where

x = z′ − x′

2 , y = y′
√

2p , z = z′ + x′

2 .

The point P ∈ D satisfies the equation x2 + y2 − z2 = 0 if and only if
T (P) satisfies the equation

0 =
(
z′ − x′

2

)2
+
(

y′
√

2p

)2
−
(
z′ + x′

2

)2

= z′2 − 2x′z′ + x′2

4 + y′2

2p − z′2 + 2x′z′ + x′2

4
= y′2 − 2px′z′.

Restricting to the third affine chart, we see this is the equation of the
parabola C:

0 = y′2

z′2 − 2px′z′

z′2 =
(
y′

z′

)2
− 2p

(
x′

z′

)
= v2 − 2pu.

Corollary 5.23 Any two conic sections are
, i.e., there exists a projec-

tive transformation from one to another.
Proof. Projective transformations are invertible: if T is represented by
the matrix M then T−1 is represented by the matrix M−1. As a result
we can map any conic section to the circle via the inverse transformation
of the one constructed in Theorem 5.22. Therefore we can map any conic
section to another by transforming to the circle.

Remark 5.24 When considered as lines in A3, the set D is the cone
shown in Figure 17. Recall that we can obtain all conic sections as

Page 104



MATH20222: Intro to Geometry Simon Peacock and Ben Smith

intersections of this cone with a plane. It is not a coincidence that we
use this same cone in the proof of Theorem 5.22. An alternative intuition
behind this proof is that we are applying a linear transformation to this
cone and then intersecting with the plane z = 1. While it is conceptually
more complex, working in projective space makes this proof much easier:
in A3 the proof is far messier!

Thank you for taking Introduction to Geometry :)
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