Exercises 9

The exercises have been split into key and extra exercises: make sure you are comfortable with key exercises first as they cover important calculations or key geometric concepts.

We expect you to spend approx. 2 hours on exercises, don't worry about finishing them all.

1 Key Exercises

Question 1 Fix a Cartesian coordinate system (x, y) for \mathbb{A}^2 and let C be the curve with equation $\frac{x^2}{16} - \frac{y^2}{9} = 1.$

- (1) Calculate the focus points for the curve C.
- (2) Specify focal polar coordinates for the curve C and write down an equation for the curve in these coordinates.
- Solution. (1) We have a relationship $a^2 + b^2 = c^2$ where $a^2 = 16$, $b^2 = 9$ and the focus points are at $(\pm c, 0)$. Thus $c^2 = 25$ and foci are at $(\pm 5, 0)$.
 - (2) Let (-5, 0) be the origin for the polar coordinates and \mathbf{e}_x be the $\theta = 0$ direction. Then the equation for the hyperbola is given by

$$r = \frac{p}{1 - e\cos\theta}$$

where $p = \frac{a^2 - c^2}{a} = \frac{-b^2}{4} = -\frac{9}{4}$ and $e = \frac{c}{a} = \frac{5}{4}$. Thus the equation of C in polar coordinates is

$$r = \frac{-9}{4 - 5\cos\theta}.$$

Question 2 Fix a Cartesian coordinate system $\mathbf{x} = (x_1, \dots, x_n)$ for \mathbb{A}^n . Let $f(\mathbf{x}) = F(\mathbf{x}) + \mathbf{P}$ and $g(\mathbf{x}) = G(\mathbf{x}) + \mathbf{Q}$ be two affine transformations. [So F and G are invertible linear maps.]

- (1) Prove that the composition $h := f \circ g$ is also an affine transformation $h(\mathbf{x}) = H(\mathbf{x}) + \mathbf{R}$. [Hint: $h(\mathbf{x}) = f(g(\mathbf{x}))$.]
- (2) Let h denote the identity transformation $h(\mathbf{x}) = \mathbf{x}$. Suppose $h = f \circ g$ is the identity. What are G and Q in terms of F and P?

[In particular, the above shows that the set of affine transformations is a group, denoted AGL_n .] Solution. (i) $f(G(\mathbf{x}) + \mathbf{Q}) = (F \circ G)(\mathbf{x}) + F(\mathbf{Q}) + \mathbf{P}$. So $H = F \circ G$ and $\mathbf{R} = F(\mathbf{Q}) + \mathbf{P}$. Since F and G are invertible, H is invertible.

(ii) If H = id and $\mathbf{P} = \mathbf{O}$ then $G = F^{-1}$ and $\mathbf{Q} = -F^{-1}(\mathbf{P})$.

Question 3 Let f be the affine map $f : \mathbb{A}^2 \to \mathbb{A}^2$ that is a reflection in the line x = 1. Suppose $f(\mathbf{x}) = F(\mathbf{x}) + \mathbf{P}$ for a linear invertible map F and vector $\mathbf{P} \in \mathbb{A}^2$.

- (1) Determine the vector \mathbf{P} .
- (2) Work out where f sends the points (1,0) and (0,1). Hence, write down the matrix of $F \colon \mathbb{E}^2 \to \mathbb{E}^2$ with respect to the standard basis on \mathbb{A}^2 .

Solution. (1) The point (0,0) is mapped to (2,0) by f so

$$f(\mathbf{O}) = \mathbf{P} = \begin{bmatrix} 2\\ 0 \end{bmatrix}$$

(2) f(1,0) = (1,0), so F(1,0) = (1,0) - (2,0) = (-1,0). f(0,1) = (2,1), so F(0,1) = (2,1) - (2,0) = (0,1). Therefore

Question 4 Consider the affine transformation $f(\mathbf{x}) = F(\mathbf{x}) + \mathbf{P}$ on \mathbb{A}^2 that is made up of a rotation F by $\frac{\pi}{3}$ about the origin, followed by a translation by $\mathbf{P} = (3, 2)$.

- (1) Write down the matrix of the linear operator F with respect to the standard basis.
- (2) Find a point fixed by f.

(3) Describe the affine transformation f in a coordinate system where the fixed point is taken to be the origin.

Solution. (1)

$$F = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

(2)

$$\begin{split} f(x,y) &= (x,y) \iff \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{2}x - \frac{\sqrt{3}}{2}y + 3\\ \frac{\sqrt{3}}{2}x + \frac{1}{2}y + 2 \end{bmatrix} \\ \iff \begin{cases} \frac{1}{2}x = 3 - \frac{\sqrt{3}}{2}y\\ \frac{\sqrt{3}}{2}x = \frac{1}{2}y - 2\\ \iff \begin{cases} \frac{1}{2}x = 3 - \frac{\sqrt{3}}{2}y\\ \sqrt{3}(3 - \frac{\sqrt{3}}{2}y) = \frac{1}{2}y - 2\\ \iff y = 1 + \frac{3\sqrt{3}}{2} \text{ and } x = \frac{3}{2} - \sqrt{3} \end{split}$$

(3) f is a rotation of $\pi/3$ about the fixed point.

Question 5 Let $f(\mathbf{x}) = F(\mathbf{x}) + \mathbf{P}$ be the affine transformation with

$$F = \begin{bmatrix} \frac{3}{5} & \frac{-4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}, \qquad \mathbf{P} = \begin{bmatrix} \frac{6}{5} \\ \frac{12}{5} \end{bmatrix}$$

- (1) Find a line in \mathbb{A}^2 that is fixed by f.
- (2) Show that the induced linear operator F of f is orthogonal.

(3) Deduce that f is a reflection in the fixed line. Solution. (1)

$$f(x,y) = (x,y) \iff F(x,y) + \mathbf{P} = (x,y)$$
$$\iff \begin{cases} 3x - 4y + 6 = 5x\\ -4x - 3y + 12 = 5y \end{cases}$$
$$\iff \begin{cases} 2x + 4y = 6\\ 4x + 8y = 12\\ \iff x + 2y = 3 \end{cases}$$

The line given by the equation x + 2y = 3 is fixed by f.

- (2) Check that $FF^T = Id$.
- (3) The linear operator has determinant given by

$$\det \begin{bmatrix} 3/5 & -4/5 \\ -4/5 & -3/5 \end{bmatrix} = -9/25 - 16/25 = -1,$$

which is negative and since it is orthogonal acting on \mathbb{E}^2 it is a reflection.