
MATH20222: Introduction to Geometry

Exercises 8
The exercises have been split into key and extra exercises: make sure you are comfortable with key

exercises first as they cover important calculations or key geometric concepts.
We expect you to spend approx. 2 hours on exercises, don’t worry about finishing them all.
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1 Key Exercises
Question 1 For each of the following curves C and 1-forms ω, calculate

∫
C

ω up to sign.

(1) C =
{(

x
y

)
∈ A2 | y = x2, 0 < x < 1

}
, ω = ydx − xdy

(2) C =
{(

x
y

)
∈ A2 | y3 = x, −1 < x < 1

}
, ω = xydx + xydy

(3) C =
{(

x
y

)
∈ A2 | x2 + y2 = 13

}
, ω = (2xy + y2)dx + (x2 + 2xy)dy

(4) C =
{(

x
y

)
∈ A2 | x2 − y2 = 1, 1 < x < 2, y > 0

}
, ω = exdx + dy

Solution. For all solution, we compute the integral for a specific parametrisation. Your answer may differ
by sign if you picked a parametrisation with opposite orientation.

(1) One parametrisation for C is γ(t) =
(

t
t2

)
on the interval (0, 1) with velocity vector γ′(t) =

[
1
2t

]
.

Then the integral takes the value∫
C

ydx − xdy =
∫ 1

0
t2 · 1 − t · 2tdt =

∫ 1

0
−t2dt =

[
− t3

3

]1

0
= −1

3 .

(2) One parametrisation for C is γ(t) =
(

t3

t

)
on the interval (−1, 1) with velocity vector γ′(t) =

[
3t2

1

]
.

Then the integral takes the value∫
C

xydx + xydy =
∫ 1

−1
t4 · 3t2 + t4 · 1dt =

∫ 1

−1
3t6 + t4dt =

[
3t7

7 + t5

5

]1

−1
= 44

35

(3) ω is exact, as it is of the form ω = d(x2y +xy2). Furthermore, C is a closed curve and so
∫

C
ω = 0.
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(4) ω is exact as ω = df where f = ex + y. Therefore we just need to evaluate f on the endpoints of
C. The endpoints are (2,

√
3), (1, 0) and so∫

C

ω = f(2,
√

3) − f(1, 0) =
(

e2 +
√

3
)

−
(

e1 +
√

0
)

= e(e − 1) +
√

3.

Question 2 Fix a Cartesian coordinate system (x, y) for A2. Let C be an ellipse with foci F1 = (−1, 0)
and F2 = (1, 0). The point P = (0, 2) is on the ellipse C.

(1) Find the implicit equation for the ellipse in Cartesian coordinates.

(2) What is the eccentricity, e, of the ellipse.
Solution. (1) The distance of the ellipse is 2a where

2a = ∥F1 − P∥ + ∥F2 − P∥

=
√

22 + 12 +
√

22 + 12

= 2
√

5.

Now b2 = a2 − c2 = 5 − 1 = 4 so b = 2. Alternatively we can note that we have the standard
coordinate system for the ellipse so the point (0, b) = (0, 2) is on the curve. Thus the equation for
the ellipse is

x2

5 + y2

4 = 1.

(2) The eccentricity is e = c
a = 1√

5 .

Question 3 Fix a Cartesian coordinate system (x, y) for A2. Let C be a hyperbola with focus points
F1 = (−2, 0) and F2 = (2, 0) and assume the point P = (2, 3) is on the curve C.

(1) Find the two points (s, 0) and (t, 0) where C intersects the x-axis.

(2) Write down the implicit equation of the curve.
Solution. We must calculate the distance 2a of the hyperbola:

2a = |∥F1 − P∥ − ∥F2 − P∥|

=
∣∣∣√42 + 32 −

√
32

∣∣∣
= 2

(1) Since a = 1 and we have the standard coordinate system the points of intersection with the x-axis
are at (−1, 0) and (1, 0).

(2) b2 = c2 − a2 = 22 − 12 = 3 so the equation for the hyperbola is

x2 − y2

3 = 1.
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2 Extra Exercises
Question 4 Consider the curve

C =
{(

x
y

)
| x = 2y2 − 1, 0 < y < 1

}
.

(1) Compute two parametrisations of C with the opposite orientation.

(2) Calculate the integral ∫
C

sin ydx

for each parametrisation.
Solution. (1) By letting y = t, we get the parametrisation of C

γ : (0, 1) → A2

t 7→
(

2t2 − 1
t

)
The reparametrisation map

φ : (−1, 0) → (0, 1), φ(t) = −t

allows us to define another parametrisation γ̃(t) of C:

γ̃ : (−1, 0) → A2

t 7→ γ(φ(t)) =
(

2t2 − 1
−t

)
As dφ

dt = −1, γ̃ has the opposite orientation to γ.
Note: There are loads of different parametrisations you could obtain for this curve. However, the
following part requires quite a complicated integral, therefore the more simple you can make your
parametrisation, the better.

(2) Note that sin ydx is not exact, therefore we must use a parametrisation to evaluate the integral.
The corresponding velocity vectors for our parametrisations calculated in part (a) are

γ′(t) =
[
4t
1

]
, γ̃′(t) =

[
4t
−1

]
For γ, we have the integral∫

C

sin ydx =
∫ 1

0
4t · sin tdt

= [−4t cos t]10 +
∫ 1

0
4 cos tdt (integration by parts)

= [−4t cos t + 4 sin t]10
= 4 sin 1 − 4 cos 1

For γ̃, the calculation is very similar:∫
C

sin ydx =
∫ 0

−1
4t · sin(−t)dt

= −
∫ 0

−1
4t · sin tdt

= − [−4t cos t + 4 sin t]0−1 (by previous integral)
= 4 cos(−1) + 4 sin(−1)
= −(4 sin(1) − 4 cos(1))

This is the solution we expect, as we simply reversed the orientation of the curve.
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Question 5 Calculate the integral ∫
C

xdy

for each of the following curves:

(1) the circle C =
{(

x
y

)
| x2 + y2 = 12y

}

(2) the ellipse C =
{(

x
y

)
| x2 + y2

9 = 1
}

.

Solution. xdy is not exact, therefore we must calculate parametrisations for both of these curves.

(1) By completing the square, we see C has the equation x2 + (y − 6)2 = 36, i.e., it is the circle of
radius 6 with centre (0, 6). We can modify the standard parametrisation of a circle to get

γ : [0, 2π] → A2

t 7→
(

6 cos t
6 sin t + 6

)
, γ(t) =

[
−6 sin t
6 cos t

]
.

Using this parametrisation, we obtain the integral∫
C

xdy =
∫ 2π

0
36 cos2 tdt

=
∫ 2π

0
18 cos 2t + 18

(
cos2 t = 1

2 (cos 2t + 1)
)

= [9 sin 2t + 18t]2π
0

= 36π.

(2) We can modify the standard parametrisation of a circle to get

γ : [0, 2π] → A2

t 7→
(

cos t
3 sin t

)
, γ(t) =

[
− sin t
3 cos t

]
.

Using this parametrisation, we obtain the integral∫
C

xdy =
∫ 2π

0
3 cos2 tdt

=
∫ 2π

0

3
2 cos 2t + 3

2

(
cos2t = 1

2 (cos 2t + 1)
)

=
[

3
4 sin 2t + 3

2 t

]2π

0

= 3π.

Question 6 Let C be the circle with radius a centred at the origin. Recall that we can parametrise C
via

γ : [0, 2π) → A2

t 7→
(

a cos t
a sin t

)
.

(1) Write γ and γ′ in polar coordinates (r, θ).

(2) Compute the integral ∫
C

r2dθ.
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(3) How does the integral in part (b) relate to the following integral?∫
C

−ydx + xdy

Solution. (1) As x = a cos t and y = a sin t, it is immediate that r = a and θ = t in polar coordinates.
We can therefore parametrise C in polar coordinates as

γ : [0, 2π) → A2

t 7→
(

a
t

)
.

(2) We calculate this integral the same way we do in Cartesian coordinates. The velocity vector of γ

in polar coordinates is γ′(t) =
[
0
1

]
. Substituting this into the integral gives

∫
C

r2dθ =
∫ 2π

0
a2 · 1 = 2πa2.

(3) We showed on sheet 6 that −ydx + xdy and r2dθ are the same 1-form in different coordinate
systems. As the value of

∫
C

ω is invariant under changing coordinates, we can immediate deduce
that ∫

C

−ydx + xdy = 2πa2.

We can explicitly calculate the value of
∫

C
−ydx + xdy to verify this. Using the parametrisation γ,

we get ∫
C

−ydx + xdy =
∫ 2π

0
−a sin t · −a sin t + a cos t · a cos tdt

=
∫ 2π

0
a2(sin2 t + cos2 t)dt = 2πa2.

Question 7 Fix a Cartesian coordinate system (x, y) for A2. Let C be an ellipse with focus points
F1 = (−5, 0) and F2 = (16, 0). The point P = (0, 12) is on the ellipse.

(1) Find the two points of intersection between C and the line x = 0 (that is, the y-axis).

(2) Find the two points of intersection between C and the line y = 0 (that is, the x-axis).

(3) What is the eccentricity of the ellipse?
Solution. First notice that the focal line is the x-axis, but we do not have the standard coordinates for
the ellipse.

(1) Since the focal line is the x-axis, we have symmetry in this line. Therefore (0, 12) and (0, −12) are
on the curve.

(2) We need to know the distance of the curve:

2a = ∥F1 − P∥ + ∥F2 − P∥

=
√

52 + 122 +
√

162 + 122

=
√

169 + 4
√

42 + 32 = 13 + 20 = 33

The centre of the ellipse is at (21/2 − 5, 0) = (11/2, 0), so the ellipse intersects the focal line y = 0 at
the points ( 11−33

2 , 0) = (−11, 0) and ( 11+33
2 , 0) = (22, 0).

(3) e = c
a = 21/2

33/2
= 7

11 .
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Question 8 Fix Cartesian coordinates (x, y) and let C1, C2 and C3 be conic sections with the implicit
equations:

C1 : 4x2 + 4x + y2 = 0;
C2 : 4x2 + 4x − y2 = 0;
C3 : 4x2 + 4x + y = 0.

Show that C1 is an ellipse, C2 is a hyperbola and C3 is a parabola.
Solution. Starting with C1 we see

4x2 + 4x + y2 = 0
⇐⇒ 4x2 + 4x + 1 + y2 = 1
⇐⇒ 4(x2 + x + 1/4) + y2 = 1
⇐⇒ 4(x + 1/2)2 + y2 = 1

So with Cartesian coordinates (x̃, y) where x̃ = x + 1/2, the equation of C1 is 4x̃2 + y2 = 1: the standard
equation for an ellipse. These new coordinates have the same orthonormal basis as the original Cartesian
coordinate system, but the origin is shifted to (x, y) = (−1/2, 0).

Similarly for C2 we see that

4x2 + 4x − y2 = 0 ⇐⇒ 4(x + 1/2)2 − y2 = 1

is the standard equation for a hyperbola in the coordinates (x̃, y).
Finally

4x2 + 4x + y = 0
⇐⇒ 4x2 + 4x + 1 + y − 1 = 0
⇐⇒ 4x2 + 4x + 1 + y − 1 = 0
⇐⇒ 1 − y = 4(x + 1/2)2

Therefore using coordinates (x̃, ỹ) where x̃ is as above and ỹ = 1 − y the equation for C3 is ỹ = 4x̃2: a
standard equation for a parabola. These new coordinates have a different orthonormal basis and origin
from the original coordinate system. The new orthonormal basis is (ex, −ey), where (ex, ey) is the
orthonormal basis for the original Cartesian coordinates. The new origin is at (x, y) = (−1/2, 1).
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