
MATH20222: Introduction to Geometry

Exercises 6
The exercises have been split into key and extra exercises: make sure you are comfortable with key

exercises first as they cover important calculations or key geometric concepts.
We expect you to spend approx. 2 hours on exercises, don’t worry about finishing them all.
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1 Key Exercises
Question 1 Plot each of the following vector fields in A2. Determine whether they are conservative or
not.

(1) W = −xex − yey

(2) W = yex + xey

(3) W = (x + y)ex + (x + y)ey

Solution. The plots of the three vector fields are given in Figure 1.

(1) W is conservative: for the function f(x, y) = −x2−y2

2 , we have

∂f

∂x
= −x,

∂f

∂y
= −y ⇒ ∇f = −xex − yey.

(2) W is conservative: for the function f(x, y) = xy, we have

∂f

∂x
= y,

∂f

∂y
= x ⇒ ∇f = yex + xey.

(3) W is conservative: for the function f(x, y) = (x+y)2

2 , we have

∂f

∂x
= ∂f

∂y
= x + y ⇒ ∇f = (x + y)ex + (x + y)ey.

Question 2 For each of the following 1-forms ω, find all points P ∈ A2 such that ωP := ω(P, −) is the
linear functional

ωP : TP
(
A2)

→ R[
vx

vy

]
7→ vx + vy.

(1) ω = xdx + ydy

(2) ω = 3xdx + y2dy

(3) ω = sin xdx + cos ydy
Solution. Recall that for a 1-form ω = gxdx + gydy, the linear functional ωP is

ωP (v) = gx(P)dx(v) + gy(P)dy(v) = gx(P)vx + gy(P)vy.

Therefore for each ω, we want the points P such that gx(P) = gy(P) = 1.

(1) If x = y = 1, the unique point with this linear functional is

P =
(

1
1

)
.

(2) If 3x = y2 = 1, then there are two points with this linear functional{( 1
3
1

)
,

( 1
3

−1

)}
.

(3) If sin x = cos y = 1, then the set of points with this linear functional are{(
π
2 + 2mπ

2nπ

)
| m, n ∈ Z

}
.
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Figure 1: Plots of the vector fields from Question 1, listed from a-c top to bottom.
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Question 3 Which of the following 1-forms are exact? If they are exact, find a 0-form f such that
ω = df . If they are not exact, prove no such 0-form exists.

(1) ω = sin ydx + x cos ydy

(2) ω = 2xdx + 3y2dy

(3) ω = x3dy
Solution. (1) ω is exact: the 0-form f = x sin y satisfies ω = df .

(2) ω is exact: the 0-form x2 + y3 satisfies ω = df .

(3) ω is not exact: if there exists an f such that ∂f
∂x = 0 and ∂f

∂y = x3, then

3x2 = ∂

∂x

(
∂f

∂y

)
= ∂

∂y

(
∂f

∂x

)
= 0,

which is a contradiction.

Question 4 Consider the 0-form f = x3 − y3 and the vector field W = −yex + xey.

(1) Calculate the differential of f .

(2) Compute df(−, W).

(3) Using your previous answer, find all points in A2 where the directional derivative DWf of f along
W is zero.

Solution. (1) By the definition of the differential, we have df = 3x2dx − 3y2dy.

(2) Using the definition of applying 1-forms to vector fields from the notes, we get

df(−, W) = (3x2) · −y + (−3y2) · x = −3xy(x + y).

(3) As DWf = df(−, W) = −3xy(x + y), we have

DWf = 0 ⇐⇒


x = 0
y = 0
x = −y

.
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2 Extra Exercises
Question 5 We shall show that 1-form computations do not depend on the coordinate system by
considering a computation in polar coordinates (r, θ).

(1) Consider the vector field W = −yex + xey. Show that we can rewrite W in polar coordinates as

W = eθ.

(2) Polar coordinates have the elementary 1-forms dr, dθ where for a vector v = [vr, vθ]T we have

dr(v) = vr, dθ(v) = vθ.

Furthermore, they are related to the elementary forms dx, dy by

dx = ∂x

∂r
dr + ∂x

∂θ
dθ, dy = ∂y

∂r
dr + ∂y

∂θ
dθ.

Show that we can rewrite the 1-form ω = xdx + ydy in polar coordinates as

ω = rdr.

(3) Calculate ω(−, W) in polar coordinates. How does your solution relate to the same calculation in
Cartesian coordinates? (Example 2.29 in the notes)

Solution. (1) We can write ex, ey in terms of er, eθ in a similar way as (5b) on Exercise sheet 5:

ex = ∂r

∂x
er + ∂θ

∂x
eθ = x√

x2 + y2
er + −y

x2 + y2 eθ = cos θer − sin θ

r
eθ (1)

ey = ∂r

∂y
er + ∂θ

∂y
eθ = y√

x2 + y2
er + x

x2 + y2 eθ = sin θer + cos θ

r
eθ (2)

We can substitute these values to write our vector field W in polar coordinates:

W = −r sin θ

(
cos θer − sin θ

r
eθ

)
+ r cos θ

(
sin θer + cos θ

r
eθ

)
= (−r sin θ cos θ + r sin θ cos θ)er + (sin2 θ + cos2 θ)eθ

= eθ

(2)

dx = ∂x

∂r
dr + ∂x

∂θ
dθ

= cos θdr + (−r sin θ)dθ (3)

dy = ∂y

∂r
dr + ∂y

∂θ
dθ

= sin θdr + r cos θdθ (4)

A similar substitution to part (a) gives

ω = xdx + ydy

= r cos θ(cos θdr + (−r sin θ)dθ) + r sin θ(sin θdr + r cos θdθ)
= (r cos2 θ + r sin2 θ)dr + (−r2 sin θ cos θ + r2 sin θ cos θ)dθ

= rdr

(3) Given a 1-form ω = grdr + gθdθ and a vector field W = hrer + hθeθ, we calculate ω(−, W) that
same way as in Cartesian coordinates:

ω(−, W) = gr · hr + gθ · hθ = r · 0 + 0 · 1 = 0

This is the same answer as we got in the notes for Cartesian coordinates, as these calculations are
invariant under change of coordinates. The conclusion is far more obvious now: ω(−, W) is how a
vector field dependent on eθ changes with respect to a 1-form in terms of r, and clearly these two
have no interaction as they are different variables.
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