
MATH20222: Introduction to Geometry

Exercises 5
The exercises have been split into key and extra exercises: make sure you are comfortable with key

exercises first as they cover important calculations or key geometric concepts.
We expect you to spend approx. 2 hours on exercises, don’t worry about finishing them all.
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1 Key Exercises
For all questions, we work in Cartesian coordinates ( x

y ) ∈ A2, where each tangent space has basis
(ex, ey) ⊂ E2.

Question 1 Calculate the area of the parallelogram (a, b), formed by the following vectors, where
(e1, e2, e3) is an orthonormal basis.

(1) a = 2e1 + 2e2 + 3e3 and b = e1 + e2 + e3;

(2) a = 5e1 + 8e2 + 4e3 and b = 10e1 + 16e2 + 8e3.
Solution. For calculation of length the orientation is unimportant: we can use the vector product with
either orientation.

(1) Area( (a, b)) = ∥a × b∥ =
((

det
[
2 3
1 1

])2
+
(

det
[
2 3
1 1

])2
+
(

det
[
2 2
1 1

])2
)1/2

=
√

2.

(2) b = 2a: the vectors are collinear, the vector product is zero and the area is zero.

Question 2 Let B = (e1, e2) be an orthonormal basis for E2 and let P be a linear operator with the
matrix: [P ]B =

[ 5 −1
2 2

]
. (See Exercise Sheet 2 Question 8.)

(1) Calculate the area of the parallelogram (e1 + e2, e1 + 2e2).

(2) Recall the a = e1 + e2 is an eigenvector of P with eigenvalue 4; and b = e1 + 2e2 is an eigenvector
of P with eigenvalue 3. Calculate the area of the image parallelogram (P (a), P (b)) without using
the determinant.

(3) Compare your answers to parts (1) and (2) with the det P .
Solution. (1) We can calculate the area using the 2 × 2 determinant:

Area =
∣∣∣∣det

[
1 1
1 2

]∣∣∣∣ = |2 − 1| = 1.

(2) As a and b are eigenvalues we know P (a) = 4e1 + 4e2; and P (b) = 3e1 + 6e2.

Area =
∣∣∣∣det

[
4 4
3 6

]∣∣∣∣ = |24 − 12| = 12.

(3) det P = 5 × 2 − (−1) × 2 = 12. The determinant of the operator is 12 and the image parallelogram
is det P = 12 times bigger than the original parallelogram.

Question 3 Let B = (e1, e2, e3) be an orthonormal basis for E3. Let P be the linear operator with

matrix [P ]B =

1 3 −4
2 4 −4
0 0 1

.

(1) Calculate the volume of the parallelepiped formed by the vectors a = 2e1 + e3; b = 4e2 + 3e3; and
c = e1 − e2.

(2) Calculate P (a), P (b) and P (c).

(3) What is the volume of the parallelepiped (P (a), P (b), P (c))? (without using the determinant)

(4) Compare the volumes from parts (1) and (3) with the determinant of P .
Solution. (1) The volume of the parallelepiped is given by the (absolute value of) 3 × 3 determinant

Vol =

∣∣∣∣∣∣det

2 0 1
0 4 3
1 −1 0

∣∣∣∣∣∣ = |2 × 3 + 1 × (−4)| = 2.
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(2)
P (a) =

1 3 −4
2 4 −4
0 0 1

2
0
1

 =

−2
0
1

 P (b) =

0
4
3

 P (c) =

−2
−2
0


(3)

Vol
(

(P (a), P (b), P (c))
)

=

∣∣∣∣∣∣det

−2 0 1
0 4 3

−2 −2 0

∣∣∣∣∣∣ = |−2 × 6 + 1 × 8| = 4.

(4) Calculating the determinant using the last row:

det P = det

1 3 −4
2 4 −4
0 0 1

 = det
[
1 3
2 4

]
= −2.

The volume of the parallelepiped is scaled by 2 = |det P |.
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2 Extra Exercises
Question 4 Let B, P , a, b and c be as in Question 3.

(1) What is the area of the parallelograms:

(a) (a, b); (b) (a, c)?

(2) Compare these to the areas of the image parallelograms:

(a) (P (a), P (b)); (b) (P (a), P (c))?

(3) Can you say anything about the determinant of a linear operator acting on a 3-dimensional space
and the scaling of parallelograms?

(4) Can you find a linear operator that fixes the volume of parallelepipeds but scales the area of some
parallelogram by λ?

Solution. (1)

(a) Area
(

(a, b)
)

= ∥a × b∥

=
∥∥∥∥e1 det

[
0 1
4 3

]
− e2 det

[
2 1
0 3

]
+ e3 det

[
2 0
0 4

]∥∥∥∥
=
(
16 + 36 + 64)1/2

= 2
√

29

(b) Area
(

(a, c)
)

=
∥∥∥∥e1 det

[
0 1

−1 0

]
− e2 det

[
2 1
1 0

]
+ e3 det

[
2 0
1 −1

]∥∥∥∥
=
(
1 + 1 + 4)1/2

=
√

6

(2)

(a) Area
(

(P (a), P (b))
)

=
∥∥∥∥e1 det

[
0 1
4 3

]
− e2 det

[
−2 1
0 3

]
+ e3 det

[
−2 0
0 4

]∥∥∥∥
=
(
16 + 36 + 64

)1/2

= 2
√

29

(b) Area
(

(P (a), P (c))
)

=
∥∥∥∥e1 det

[
0 1

−2 0

]
− e2 det

[
−2 1
−2 0

]
+ e3 det

[
−2 0
−2 −2

]∥∥∥∥
=
(
4 + 4 + 16

)1/2

=
√

24
= 2

√
6

(3) The linear operator fixes the area of the first parallelogram, but doubles the area of the second. In
general the determinant of linear operator acting on a 3-dimensional Euclidean space controls the
scaling of volumes, but says nothing about the scaling of areas (or lines).

(4) There are many choices: consider a linear operator with matrixλ 0 0
0 1 0
0 0 1

λ

 .

This has determinant 1 and so the volumes of parallelepipeds are fixed by the operator. The
parallelogram (actually a rectangle) formed by the vectors [1 0 0]T and [0 1 0]T has area 1, but is
mapped to the parallelogram formed by [λ 0 0]T and [0 1 0]T with area λ.
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Question 5 Consider the set of points

L =
{(

x
mx + c

)
∈ A2 | x ∈ R

}
, m, c ∈ R.

Show that L is an affine space.
[Hint: As L forms a line, the associated vector space should be one-dimensional.]

Solution. Note that L is a line in the plane with gradient m. We would like to find a vector space V
such that we have an addition map

L × V → L

(P, v) 7→ P + v ,

in particular P + v is always a point on our line L. We consider the vector space

V = span
([

1
m

])
,

whose vectors span the line with gradient m going through the origin, i.e., it is parallel to L. Then for
any P ∈ L, v ∈ V , their sum is contained in L:

P =
(

x
mx + c

)
, v =

[
α

mα

]
⇒ P + v =

(
x + α

m(x + α) + c

)
∈ L

Therefore this addition map is well defined.
It remains to check the three axioms for affine space:
Associativity:

P + (v + w) =
(

x
mx + c

)
+
[

α + β
m(α + β)

]
=
(

x + α + β
m(x + α + β) + c

)
(P + v) + w =

(
x + α

m(x + α) + c

)
+
[

β
mβ

]
=
(

x + α + β
m(x + α + β) + c

)

Zero:

P + 0 =
(

x
mx + c

)
+
[
0
0

]
=
(

x
mx + c

)
Vectors between points: Let P, Q be points in L, we can consider the vector

v = Q − P =
(

y
my + c

)
−
(

x
mx + c

)
=
[

y − x
m(y − x)

]
∈ V

⇒ P + v =
(

x
mx + c

)
+
[

y − x
m(y − x)

]
=
(

y
my + c

)
= Q

Question 6 Fix Cartesian coordinates (x, y) on A2 with respect to an origin O and orthonormal basis
B = (ex, ey).

(1) One way to define polar coordinates (r, θ) on A2 is via the map

R2 −→ A2

(r, θ) 7→
(

r cos θ
r sin θ

)
Show this map is a coordinate system. [Hint: It may be helpful to recall the following trigonometric
identities:]

sin(arctan(z)) = z√
1 + z2

, cos(arctan(z)) = 1√
1 + z2
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(2) Polar coordinates give rise to a different basis (er, eθ) for the tangent spaces TP
(
A2) via the

equations:

er = ∂x

∂r
ex + ∂y

∂r
ey, eθ = ∂x

∂θ
ex + ∂y

∂θ
ey.

Write down the basis vectors in terms of ex, ey. Is this basis orthonormal?

(3) Describe how the basis (er, eθ) for TP
(
A2) varies as we vary P. What is the connection between

(r, θ) and (er, eθ)?
Solution. (1) The map defining polar coordinates is a coordinate system if it is surjective. Therefore

for some point (x, y) ∈ A2, we must find reals r, θ such that

x = r cos θ, y = r sin θ.

We first note that if the above equations hold, we have

x2 + y2 = r2(cos2 θ + sin2 θ) = r2,

therefore we can pick r =
√

x2 + y2. Furthermore, we can find a possible expression for θ via
y

x
= r sin θ

r cos θ
= tan θ,

therefore we can set θ = arctan( y
x ).

Finally, let us check these values do give us x and y:

r cos θ =
√

x2 + y2 cos
(

arctan
(y

x

))
=
√

x2 + y2√
1 +

(
y
x

)2
= x

√
x2 + y2√

x2 + y2
= x

r sin θ =
√

x2 + y2 sin
(

arctan
(y

x

))
=
(

y
x

)√
x2 + y2√

1 +
(

y
x

)2
= y

√
x2 + y2√
x2 + y2

= y

(2) As x = r cos θ, y = r sin θ we have

er = ∂x

∂r
ex + ∂y

∂r
ey = cos θex + sin θey

eθ = ∂x

∂θ
ex + ∂y

∂θ
ey = −r sin θex + r cos θey

To check if this basis is orthonormal, we calculate the following inner products

⟨er, eθ⟩ = ⟨cos θex + sin θey, −r sin θex + r cos θey⟩
= −r sin θ cos θ⟨ex, ex⟩ + r cos2 θ⟨ex, ey⟩ + −r sin2 θ⟨ey, ex⟩ + r sin θ cos θ⟨ey, ey⟩
= −r sin θ cos θ + r sin θ cos θ = 0

⟨er, er⟩ = ⟨cos θex + sin θey, cos θex + sin θey⟩
= cos2 θ⟨ex, ex⟩ + sin θ cos θ⟨ex, ey⟩ + sin θ cos θ⟨ey, ex⟩ + sin2 θ⟨ey, ey⟩
= cos2 θ + sin2 θ = 1

⟨eθ, eθ⟩ = ⟨−r sin θex + r cos θey, −r sin θex + r cos θey⟩
= r2 sin2 θ⟨ex, ex⟩ − r2 sin θ cos θ⟨ex, ey⟩ − r2 sin θ cos θ⟨ey, ex⟩ + r2 cos2 θ⟨ey, ey⟩
= r2(cos2 θ + sin2 θ) = r2

The two basis vectors are orthogonal, and er is unit length but eθ is not unit length. Therefore
(er, eθ) is not an orthonormal basis.

(3) The basis vector er points in the radial direction, i.e., away from the origin O. As we vary P, its
direction changes by how much the angle θ changes. Its magnitude never changes as it is always
unit length.
The basis vector eθ points in the orthogonal direction to er, i.e., the direction in which rotations
occur. As we vary P, its direction also changes by how much the angle θ changes. Its magnitude
increases as r increases. This is because a small change in θ moves P less distance when r is small
than when r is large.
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