
MATH20222: Introduction to Geometry

Exercises 4
The exercises have been split into key and extra exercises: make sure you are comfortable with key

exercises first as they cover important calculations or key geometric concepts.
We expect you to spend approx. 2 hours on exercises, don’t worry about finishing them all.
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1 Key Exercises
Question 1 Let B = (e, f , g) be an orthonormal basis in E3. Define a linear operator P on E3 by

P (e) = e

P (f) =
√

2
2 f +

√
2

2 g

P (g) = −
√

2
2 f +

√
2

2 g

(1) Write down the matrix [P ]B.

(2) Show P is an orthogonal operator that preserves orientation.

(3) Find the axis and angle of rotation.
Solution. (1) The matrix for P in terms of B is

[P ]B =

1 0 0
0

√
2

2 −
√

2
2

0
√

2
2

√
2

2

 .

(2) A standard calculation shows [P ]B is an orthogonal matrix:1 0 0
0

√
2

2

√
2

2
0 −

√
2

2

√
2

2


1 0 0

0
√

2
2 −

√
2

2
0

√
2

2

√
2

2

 =

1 0 0
0 1 0
0 0 1


therefore P is orthogonal. Furthermore, det(P ) = det([P ]B) = 1 therefore it preserves orientation.

(3) By Euler’s Theorem, we know P is a rotation operator. We could calculate the eigenvectors from
[P ]B to find the axis of rotation, however by definition of P

P (e) = e.

Therefore the axis of rotation is Le = span(e).
The trace of P is the sum of elements on the diagonal of [P ]B:

Tr(P ) = 1 +
√

2
2 +

√
2

2 = 1 +
√

2 ⇒ φ = arccos
(√

2
2

)
= ±π

4 .

However, as our matrix [P ]B is in a nice form, we can compute the sign of this angle:

[P ]B =

1 0 0
0

√
2

2 −
√

2
2

0
√

2
2

√
2

2

 =

1 0 0
0 cos φ − sin φ
0 sin φ cos φ


⇒ cos φ = sin φ =

√
2

2
⇒ φ = π

4

Question 2 Let B = (e, f , g) be an orthonormal basis in E3. Consider the linear operator P1 in E3

defined by

P1(e) = f P1(f) = e P1(g) = g.

Also consider the linear operator P2 that is the reflection operator in the plane spanned by e and f .

(1) State whether P1 and P2 preserves orientation.
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(2) Define the operator P = P1 ◦ P2 that applies the operator P2 followed by the operator P1. Does P
preserve orientation?

(3) Show that P is a rotation operator. Find its axis and angle of rotation.
Solution. (1) The matrix for P1 in terms of B is

[P1]B =

0 1 0
1 0 0
0 0 1


whose determinant is −1, therefore P1 does not preserve orientation.
Note that by orthonormality, g is a normal vector to the plane spanned by e, f . Therefore P2 fixes
e and f but sends g 7→ −g:

[P2]B =

1 0 0
0 1 0
0 0 −1


The determinant of this matrix is −1 so P2 also doesn’t preserves orientation.

(2) The matrix for P is the product of the matrices for P1 and P2. We can quickly see whether P
preserves orientation by computing

det([P ]B) = det([P1]B) det([P2]B) = 1

and so P does preserve orientation. However, we need the matrix for P in the next part anyway,
so we could directly calculate the determinant of P from this.

[P ]B =

0 1 0
1 0 0
0 0 1

 1 0 0
0 1 0
0 0 −1

 =

0 1 0
1 0 0
0 0 −1

 .

(3) P preserves orientation, therefore suffices to show it is orthogonal, i.e.0 1 0
1 0 0
0 0 −1

 0 1 0
1 0 0
0 0 −1

 =

0 1 0
1 0 0
0 0 1

 .

[P ]B is an orthogonal matrix, therefore P is a rotation operator by Euler’s Theorem.
To calculate its eigenvectors with eigenvalue 1, we compute0 1 0

1 0 0
0 0 −1

 x
y
z

 =

x
y
z

 ⇒
−x + y = 0

x − y = 0
−2z = 0

.

Therefore e + f is an eigenvector and so the axis of rotation is Le+f = span(e + f).
The trace of P is

Tr(P ) = −1 = 1 + 2 cos φ ⇒ φ = arccos(−1) = π.

Therefore P is a rotation about Le+f by the angle π.
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2 Extra Exercises
Question 3 Let n ∈ E3 be a unit vector and consider the following operators on E3

P1(x) = x − 2⟨n, x⟩n, P2(x) = 2⟨n, x⟩n − x.

(1) Show both operators are orthogonal.

(2) Show the first operator is a reflection, along with the plane it is a reflection through.

(3) Show the second operator is a rotation. Find its axis and angle of rotation.

[(Almost) all of this question can be done without writing a matrix! You may find it helpful to consider
the plane Hn whose normal vector is n:1]

Hn =
{

x ∈ E3 | ⟨n, x⟩ = 0
}

Solution. (1) To show P1 is orthogonal, we consider the inner product

⟨P1(x), P1(y)⟩ = ⟨x − 2⟨n, x⟩n, y − 2⟨n, y⟩n⟩
= ⟨x, y⟩ − 2⟨n, x⟩⟨n, y⟩ − 2⟨n, y⟩⟨n, x⟩ + 4⟨n, x⟩⟨n, y⟩⟨n, n⟩.

As n is a unit vector, ⟨n, n⟩ = 1 and so this simplifies to ⟨P1(x), P1(y)⟩ = ⟨x, y⟩. Therefore P1 is
orthogonal.
As P2 = −P1, a similar calculation shows that P2 is also orthogonal.

(2) Applying P1 to n, we see
P1(n) = n − 2⟨n, n⟩n = −n.

Furthermore, applying P1 to an element x ∈ Hn we see

P1(x) = x − 2⟨n, x⟩n = x − 0 · n = x.

Therefore P1 leaves Hn fixed but maps its normal vector n to −n. Therefore P1 is a reflection in
the plane Hn.

(3) As P1 is a reflection, it reverses orientation therefore det(P1) < 0. Explicitly, if f , g are an orthonor-
mal basis for the plane Hn, then P1 maps the orthonormal basis (n, f , g) to (−n, f , g), reversing
the orientation. As P2 = −P1, we have det(P2) = − det(P1) > 0 and so P2 preserves orientation.
Furthermore it is orthogonal and so must be a rotation by Euler’s Theorem.
We note that

P2(n) = 2⟨n, n⟩n − n = n

and so the axis of rotation is Ln. Considering a vector y ∈ Hn, we see that

P2(y) = 2⟨n, y⟩n − y = −y,

therefore P2 rotates the plane Hn by the angle π.

Question 4 † In this question we will prove the determinant formula satisfies the axioms of a vector
product. Fix an orthogonal basis B (e1, e2, e3) for E3, which we use to define the orientation of E3. For any
two vectors v = v1e1 +v2e2 +v3e3 and w = w1e1 +w2e2 +w3e3 define the function − × − : E3 ×E3 → E3

by the determinant formula:

v × w = det

e1 e2 e3
v1 v2 v3
w1 w2 w3

 .

(VP-AC) Show, or explain why, v × w = −w × v for all vectors v and w.

((VP-⊥)) (1) Show that ⟨v × w, v⟩ = 0 for all vectors v and w.
1In general, any plane in E3 (or (n − 1)-dimensional hyperplane in En) can be written as the set of vectors orthogonal

to a normal vector n.
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(2) Using (VP-AC) deduce that ⟨v × w, w⟩ = 0.

(VP-Lin) (1) Show the following identity holds:

det
[
λa + µa′ λb + µb′

c d

]
= λ det

[
a b
c d

]
+ µ det

[
a′ b′

c d

]
.

(2) Prove that (λv + µw) × x = λ(v × x) + µ(w × x) for all vectors v, w and x.

(VP-Len) Recall the identity of Lemma 1.88: ∥v × w∥2 + ⟨v, w⟩2 = ∥v∥2∥w∥2.
Using this formula, or otherwise, prove ∥v × w∥ = ∥v∥∥w∥ for all perpendicular vectors v and w.

(VP-O) Let v1e1 + v2e2 + v3e3 and w = w1e1 + w2e2 + w3e3, be linearly independent vectors.

(1) Let C = (v, w, v × w), which you may assume is a basis for E3. Write down the transition
matrix T , from basis B to basis C.

(2) Calculate a formula for the determinant of T and deduce that B and C have the same orien-
tation.
It may be helpful to use the 3rd column to calculate the determinant:

det

a b c
d e f
g h i

 = c det
[
d e
g h

]
− f det

[
a b
g h

]
+ i det

[
a b
d e

]
.

Finally: Deduce that − × − is a vector product as defined in Definition 1.82.
Solution. Throughout, we shall let v = v1e1 + v2e2 + v3e3, w = w1e1 + w2e2 + w3e3 and x = x1e1 + x2e2 + x3e3.

(VP-AC) Anticommutative This follows immediately from the fact that swapping a pair of rows in a
matrix, switches the sign of the determinant. One can also write down the two determinants and
compare.

(VP-⊥) Perpendicular

(1)

⟨v × w, v⟩ = ⟨(v2w3 − v3w2)e1, v⟩
+ ⟨(v3w1 − v1w3)e2, v⟩
+ ⟨(v1w2 − v2w1)e3, v⟩ (linearity of ⟨−, −⟩)

= ⟨(v2w3 − v3w2)e1, v1e1⟩
+ ⟨(v3w1 − v1w3)e2, v2e2⟩
+ ⟨(v1w2 − v2w1)e3, v3e3⟩ (the basis is orthonormal)

=((((v2w3v1 −((((v3w2v1 +((((v3w1v2

−((((v1w3v2 +((((v1w2v3 −((((v2w1v3 = 0

(2)

⟨v × w, w⟩ = −⟨w × v, w⟩ Using (VP-AC)
= 0 Using part (1)

(VP-Lin) Linearity

(1) det
[
λa + µa′ λb + µb′

c d

]
= (λa + µa′)d − (λb + µb′)c

= λ(ad − bc) + µ(a′d − b′c)

= λ det
[
a b
c d

]
+ µ det

[
a′ b′

c d

]
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(2) (λv + µw) × x = det
[ e1 e2 e3

λv1+µw1 λv2+µw2 λv3+µw3
x1 x2 x3

]
= e1 det

[
λv2+µw2 λv3+µw3

x2 x3

]
− e2 det

[
λv1+µw1 λv3+µw3

x1 x3

]
+

e3 det
[

λv1+µw1 λv2+µw2
x1 x2

]
= λ (e1 det [ v2 v3

x2 x3 ] − e2 det [ v1 v3
x1 x3 ] e3 det [ v1 v2

x1 x2 ]) +
µ (e1 det [ w2 w3

x2 x3 ] − e2 det [ w1 w3
x1 x3 ] e3 det [ w1 w2

x1 x2 ])

= λ det
[ e1 e2 e3

v1 v2 v3
x1 x2 x3

]
+ µ det

[ e1 e2 e3
w1 w2 w3
x1 x2 x3

]
= λ(v × x) + µ(w × x)

(VP-Len) Length For orthogonal vectors v and w the inner product ⟨v, w⟩ = 0, thus

∥v × w∥2 = ∥v∥2∥w∥2 ⇒ ∥v × w∥ = ∥v∥∥w∥.

(VP-O) Orientation

(1)
T =

v1 w1 v2w3 − v3w2
v2 w2 v3w1 − v1w3
v3 w3 v1w2 − v2w1

 .

(2) We calculate the determinant using the right-hand column instead of the top row:

det T = (v2w3 − v3w2) det [ v2 w2
v3 w3 ] − (v3w1 − v1w3) det [ v1 w1

v3 w3 ] +
(v1w2 − v2w1) det [ v1 w1

v2 w2 ]

= (v2w3 − v3w2)2 + (v1w3 − v3w1)2 + (v1w2 − v2w1)2 > 0

The determinant is greater than zero so the bases have same orientation.

Finally: We have shown that function − × − satisfies all the axioms of Definition 1.82.

Question 5 Let B = (e1, e2, e3) be an orthonormal basis in E3. Find a unit vector n, such that the
following conditions hold:

(1) n is orthogonal to a = e1 + 2e2 + 3e3;

(2) n is orthogonal to b = e1 + 3e2 + 2e3;

(3) The basis (a, b, n) has an orientation opposite to B.

Express n using the basis B.
Solution. Using the orientation of B for the vector product we let v = a × b. This is orthogonal to
both a and b and so n is proportional to v. The vector n has length 1, so n = ±v

∥v∥ . Finally, the basis
(a, b, v) has the same orientation as B, so (a, b, −v

∥v∥ ) has the opposite orientation: the transition matrix

is
[

1 0 0
0 1 0
0 0 −∥v∥−1

]
. Therefore n = −v

∥v∥ .

v = det

e1 e2 e3
1 2 3
1 3 2

 = (4 − 9)e1 + (3 − 2)e2 + (3 − 2)e3

= −5e1 + e2 + e3

∥v∥ =
√

25 + 1 + 1 = 3
√

3

n = −v
∥v∥

= 5e1 − e2 − e3

3
√

3
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Question 6 Elisa and Faraz calculate the vector product of two vectors a and b in E3. Elisa uses
the orthonormal basis E = (e1, e2, e3) and Faraz use the orthonormal basis F = (f1, f2, f3). The vectors
expressed in these bases are:

[a]E =

a1
a2
a3

 [b]E =

b1
b2
b3

 [a]F =

a′
1

a′
2

a′
3

 [b]F =

b′
1

b′
2

b′
3


They both use the determinant formula for calculations:

a × b ?= det

e1 e2 e3
a1 a2 a3
b1 b2 b3


︸ ︷︷ ︸

Elisa’s calculations

?= det

f1 f2 f3
a′

1 a′
2 a′

3
b′

1 b′
2 b′

3


︸ ︷︷ ︸

Faraz’s calculations

.

(1) In what situations do their calculations give the same vector, and when do they give different
answers?

(2) In each case what can you say about the linear operator P , that maps each vector ei 7→ fi?
Solution. (1) If the bases E and F have the same orientation the answers will be the same. If they have

an opposite orientation to each other then Faraz will calculate the negative of the vector calculated
by Elisa.

(2) The operator P maps an orthonormal basis to an orthonormal basis, and hence is orthogonal
(det P = ±1). If Elisa and Faraz have the same answer, P preserves orientation and det P = 1,
otherwise P reverses the orientation and det P = −1.
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