Exercises 5

The exercises have been split into key and extra exercises: make sure you are comfortable with key exercises first as they cover important calculations or key geometric concepts.

We expect you to spend approx. 2 hours on exercises, don't worry about finishing them all.

1 Key Exercises

For all questions, we work in Cartesian coordinates $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{A}^2$, where each tangent space has basis $(\mathbf{e}_x, \mathbf{e}_y) \subset \mathbb{E}^2$.

Question 1 Calculate the area of the parallelogram $\square(\mathbf{a}, \mathbf{b})$, formed by the following vectors, where $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ is an orthonormal basis.

- (1) $\mathbf{a} = 2\mathbf{e}_1 + 2\mathbf{e}_2 + 3\mathbf{e}_3$ and $\mathbf{b} = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$;
- (2) $\mathbf{a} = 5\mathbf{e}_1 + 8\mathbf{e}_2 + 4\mathbf{e}_3$ and $\mathbf{b} = 10\mathbf{e}_1 + 16\mathbf{e}_2 + 8\mathbf{e}_3$.

Question 2 Let $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2)$ be an orthonormal basis for \mathbb{E}^2 and let P be a linear operator with the matrix: $[P]_{\mathcal{B}} = \begin{bmatrix} 5 & -1 \\ 2 & 2 \end{bmatrix}$. (See Exercise Sheet 2 Question 8.)

- (1) Calculate the area of the parallelogram $\square(\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 + 2\mathbf{e}_2)$.
- (2) Recall the $\mathbf{a} = \mathbf{e}_1 + \mathbf{e}_2$ is an eigenvector of P with eigenvalue 4; and $\mathbf{b} = \mathbf{e}_1 + 2\mathbf{e}_2$ is an eigenvector of P with eigenvalue 3. Calculate the area of the image parallelogram $\square(P(\mathbf{a}), P(\mathbf{b}))$ without using the determinant.
- (3) Compare your answers to parts (1) and (2) with the det P.

Question 3 Let $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ be an orthonormal basis for \mathbb{E}^3 . Let P be the linear operator with matrix $[P]_{\mathcal{B}} = \begin{bmatrix} 1 & 3 & -4 \\ 2 & 4 & -4 \\ 0 & 0 & 1 \end{bmatrix}$.

- (1) Calculate the volume of the parallelepiped formed by the vectors $\mathbf{a} = 2\mathbf{e}_1 + \mathbf{e}_3$; $\mathbf{b} = 4\mathbf{e}_2 + 3\mathbf{e}_3$; and $\mathbf{c} = \mathbf{e}_1 \mathbf{e}_2$.
- (2) Calculate $P(\mathbf{a})$, $P(\mathbf{b})$ and $P(\mathbf{c})$.
- (3) What is the volume of the parallelepiped $\mathcal{D}(P(\mathbf{a}), P(\mathbf{b}), P(\mathbf{c}))$? (without using the determinant)
- (4) Compare the volumes from parts (1) and (3) with the determinant of P.

2 Extra Exercises

Question 4 Let \mathcal{B} , P, \mathbf{a} , \mathbf{b} and \mathbf{c} be as in Question 3.

(1) What is the area of the parallelograms:

(a)
$$\square(\mathbf{a}, \mathbf{b});$$
 (b) $\square(\mathbf{a}, \mathbf{c})$?

(2) Compare these to the areas of the image parallelograms:

(a)
$$\square(P(\mathbf{a}), P(\mathbf{b}));$$
 (b) $\square(P(\mathbf{a}), P(\mathbf{c}))?$

- (3) Can you say anything about the determinant of a linear operator acting on a 3-dimensional space and the scaling of parallelograms?
- (4) Can you find a linear operator that fixes the volume of parallelepipeds but scales the area of some parallelogram by λ ?

Question 5 Consider the set of points

$$L = \left\{ \begin{pmatrix} x \\ mx + c \end{pmatrix} \in \mathbb{A}^2 \mid x \in \mathbb{R} \right\}, \, m, c \in \mathbb{R}.$$

Show that L is an affine space.

[Hint: As L forms a line, the associated vector space should be one-dimensional.]

Question 6 Fix Cartesian coordinates (x, y) on \mathbb{A}^2 with respect to an origin **O** and orthonormal basis $\mathcal{B} = (\mathbf{e}_x, \mathbf{e}_y)$.

(1) One way to define polar coordinates (r, θ) on \mathbb{A}^2 is via the map

$$\mathbb{R}^2 \longrightarrow \mathbb{A}^2$$
$$(r, \theta) \mapsto \begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix}$$

Show this map is a coordinate system. [Hint: It may be helpful to recall the following trigonometric identities:]

$$\sin(\arctan(z)) = \frac{z}{\sqrt{1+z^2}}, \quad \cos(\arctan(z)) = \frac{1}{\sqrt{1+z^2}}$$

(2) Polar coordinates give rise to a different basis $(\mathbf{e}_r, \mathbf{e}_{\theta})$ for the tangent spaces $T_{\mathbf{P}}(\mathbb{A}^2)$ via the equations:

$$\mathbf{e}_r = \frac{\partial x}{\partial r} \mathbf{e}_x + \frac{\partial y}{\partial r} \mathbf{e}_y, \quad \mathbf{e}_\theta = \frac{\partial x}{\partial \theta} \mathbf{e}_x + \frac{\partial y}{\partial \theta} \mathbf{e}_y$$

Write down the basis vectors in terms of $\mathbf{e}_x, \mathbf{e}_y$. Is this basis orthonormal?

(3) Describe how the basis $(\mathbf{e}_r, \mathbf{e}_{\theta})$ for $T_{\mathbf{P}}(\mathbb{A}^2)$ varies as we vary **P**. What is the connection between (r, θ) and $(\mathbf{e}_r, \mathbf{e}_{\theta})$?