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34 Geometric Distribution

We start off this week with a question which was posed in chapter 1 of
the book, but I waited until now to talk about. Say you’re rolling a die
multiple times and you want to see how many times you have to roll it
until you get a 6. The first roll, you have a p = 1

6 chance of getting a
six. That means you have a chance to roll a six
in 1 roll and a chance to roll a
six in 2 or more rolls.

The chances of a six showing up on the second roll is: 5
6 ·

1
6 where the

5
6 is coming from you not rolling a six in the first roll. So to roll a six
in the first two rolls gives us 1

6 + 5
6

1
6 = 11

36 ≈ 0.3056. Therefore, there’s
a chance of rolling a six in your first two rolls.

What about three? Well, we do the same. We want to add a third roll
to our list. In this case, we need to fail twice and succeed the third time
so we get: . This gives us the probability of
rolling a six only on the third roll. Adding this to our second sum gives:

1
6 + 5

6 ·
1
6 + 5

6 ·
5
6 ·

1
6 = 91

216 ≈ 0.4213

which is the probability we roll a six in our first three rolls.
Notice how we’re getting a little pattern here. For k rolls, we have

If we replace 1
6 with p and 5

6 with (1−p), we end up with .
But, with a little trick, we can actually simplify this. Let q = 1− p and
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then we get that p = 1− q. Plugging this in we have:

(1− q)
k∑
i=1

qi−1

In other words, the chance of rolling a six in the first 3 rolls is:

With our notation we also have that the chance of rolling a six on the
fifth roll is . Generalizing this gives us a probability distribu-
tion which is known as the geometric distribution. Let X be the number Wikipedia: Geometric distribu-

tionof times that something happens with probability p and let q = 1− p.

35 Discrete Distribution

Notice how for the geometric distribution, we can let k be any number!
In other words, our sample space is no longer finite. This is the next step
we take in our study of distributions from a discrete angle. A discrete
distribution is a probability distribution where the sample space is the set
of non-negative integers {0, 1, 2, 3, . . .} with a sequence of probabilities
p0, p1, p2, p3, . . . such that each pi ≥ 0 and

∑
i pi = 1. Wikipedia: Discrete distribution

Examples of discrete distributions are:

• Discrete uniform distribution

• Bernoulli distribution

• Binomial distribution

• Geometric distribution

• Poisson distribution

Note that we do need to introduce one rule in order to make discrete
distributions a distribution.

Theorem 35.1 (Infinite sum rule) If an event A is partitioned into
A1, A2, A3, . . .:

A1 tA2 tA3 t · · ·

then
P (A) = P (A1) + P (A2) + P (A3) + . . .
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With that, all of our rules are satisfied for discrete distributions to
be distributions.

Note that finite distributions are discrete distributions! For example,
if we want to just roll a dice the distribution involves only six numbers:
1, 2, 3, 4, 5, 6. Where

P (X = 1) = P (X = 2) = P (X = 3) = P (X = 4) = P (X = 5) = P (X = 6) = 1
6

In order to view this as a discrete distribution, you just need to let
P (X = i) = 0 whenever i /∈ {1, 2, 3, 4, 5, 6}.

Example 35.2 Let’s say that your friend decides to tell you that
they’re luckier than you. They pick up a dice and say, “I bet you I
can get a six before you can”. Before you agree, you decide to calculate
the chances that they’re right. What’s the probability that your friend
will win?
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36 Discrete moments

What can we say about the expected value and, more specifically, the
moments of a discrete distribution. The expected value comes naturally

E(X) =
∑
x

xP (X = x)

but only if this sum is well-defined! So, we say that the expected value
is E(X) (as defined above) if the series is absolutely convergent:

Why absolute convergence and not normal convergence? This comes
from the Riemann series theorem which states that we can only rearrange
the terms in our series if the series is absolutely convergent. Note that
all of our discrete distributions are convergent if and only if they are
absolutely convergent. Why? Because we stated that P (X = x) = px ≥
0 and we said that our sample space is all non-negative integers! So a
non-negative integer times a non-negative integer is always non-negative!
We only need to care about absolute convergence if we allow negative
terms in our sample space.

What if we look at an arbitrary function instead of just X for the
expected value? Things like the moments E(X2), E(X3) or just any
other function. Supposing that our function is f(X) then

E (f(X)) =
∑
x

f(x)P (X = x)

is defined if the right-hand side is absolutely convergent.

Example 36.1 Let’s go back to the geometric distribution we’ve been
working with most of this week. What is the expected value for when
the first six will show up when rolling a fair six-sided die? In other
words, how many times do we expect to roll the die before the first six
shows up?
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Calculate the standard deviation.

Page 83



Aram Dermenjian Math 2030 - Elementary Probability

Example 36.2 Let’s look at a second example since these things
can get a little confusing. Say that McDonald’s has a new collection of
toys for their happy meals and you’ve decided you want every single toy!
Suppose that the chance of getting each toy is independent and there
are n toys in total. If each purchase gives you a toy at random, how
many happy meals are you expected to buy before you get every toy?
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37 Poisson Distribution

We’re now gonna take a step back and look at a distribution from way
back in the day: the Poisson distribution. In Week 3 we had talked about
the binomial distribution where we have some trial which is successful
with probability p. We then repeat this trial n times and we ask what
is the probability that exactly X were successful. There were two ways
we could approximate this: the normal distribution for when p is close
to 1

2 and the Poisson distribution for when p is sufficiently small. Recall
that the Poisson approximation was given by:

P (X = k) ≈ e−µµ
k

k!

where µ = E(X) = np.
The Poisson distribution with parameter µ is the distribution: Wikipedia: Poisson distribution

P (X = k) = e−µ
µk

k!

The super nice thing about the Poisson distribution is that it has a super
easy expected value and standard deviation. Supposing that X has a
Poisson distribution with parameter µ then

E(X) = µ and SD(X) = √µ

Example 37.1 It is known that the number of raindrops that fall on
a particular square inch of roof in a one-second interval of time is given
by the Poisson distribution. Supposing that it has Poisson distribution
with parameter 2, what is the variation for the number of raindrops
(that fall on a particular square inch of roof in a one-second interval)?

Let’s look at a couple of examples of the Poisson distribution with
different values of µ.

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8
µ= 0.1
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1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 µ= 1

5 10 15 20

0.02

0.04

0.06

0.08

0.10

0.12 µ= 10

Notice how, as we plug-in higher µ, we get closer to having a normal
distribution. What this means is that we can use our normal approxima-
tion for Poisson distributions as well! So if we have a Poisson distribution
on a random variable X then

P (a ≤ X ≤ b) ≈

And the skew-normal approximation is given by

P (X ≤ b) ≈

Another cool thing about the Poisson distribution is that they’re
relatively easy to sum up. Suppose we have n independent Poisson
variables X1, X2, . . . , Xn with parameters µ1, µ2, . . . , µn respectively.
Then we know that X1 + X2 + · · · + Xn is a Poisson random variable
with parameter µ1 + µ2 + · · ·+ µn.

Example 37.2 Suppose that we’re watching a game of bowling where
four players are on a team together. The first player has a 1

15 chance of
hitting a strike, the second player has a 1

20 chance of hitting a strike, the
third play has a 1

70 chance and the final player has a 1
10 chance. They

each will throw the bowling ball 10 times and see how many strikes
they get. What is the probability distribution for how many strikes the
team will get as a whole? (Use Poisson distribution for each player and
assume that each throwing of a ball is independent.)
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38 Random Scatters

We’re now going to look into a particular way of looking at the Poisson
distribution in order to help us tackle a common question. We’ve stated
the problem before, but we’ll state it again.

Suppose you’re trying to measure how many times a particle hits
some surface. You can either think of this as raindrops hitting some
sheet, or other particles like dust, molecules, photons, etc. In biology
you can think of this as the positions of different cells or organisms on
a microscope slide. In astronomy you can think of this as positions of
stars in the night sky. In baking, you can think of this as positions of
chocolate in a chocolate chip cookie. As you can see, this idea can be
thought of in a lot of different ways!

This entire model is dependent on the fact that the number of points
in a given area has the Poisson distribution. The same idea holds if
we change our dimension from 2 to 3 to 4 or higher! We’ll still have
the Poisson distribution if looking at the number of points in a given
volume.

In order to do this, we’ll make two key assumptions:

(1) No point is in the exact same location.

(2) There’s an equal chance for the point being anywhere. (Aka, it’s
random)

The frequency of how many points will occur will be estimated by a
constant λ. This gives us the Poisson scatter theorem.

Wikipedia: Poisson Scatter The-
oremTheorem 38.1 (Poisson Scatter Theorem) Suppose we have a square

sheet where there are no points in the exact same location and all the
points are randomly placed.

Let B be a subset of the square and XB be the number of hits in B.

(1) Then XB is a Poisson random variable with parameter λ×area(B).

(2) If B1 and B2 are disjoint subsets, then XB1 and XB2 are indepen-
dent events.
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This random scatter is called the Poisson scatter with intensity λ.
The intensity λ is the expected number of hits per unit area.

Conversely, if the above two properties hold, then there are no points
in the exact same location and all the points are randomly placed.

Example 38.2 Suppose we live in a fancy house that has a pool,
but we’re not rich enough to clean the pool during the winter. When
summer hits we look at our pool and find a bunch of bacteria growing!
In a volume of 1000 drops we find roughly 2000 bacteria (which are all
separate from each other and randomly located throughout the water).
Loving biology, we take out a single drop and we smear it (uniformly)
over the surface of a dish. Since we’re totally enamoured with bacteria,
we put some food for the bacteria and leave them alone. We come back
after a few days and find nice healthy colonies of bacteria on our dish!
What is the distribution of the number of colonies over the whole plate
and over an area of half the plate? (A colony is basically a large group of
bacteria that huddles together after being birthed from the same great
great grandbacteria.)

Now suppose that there’s a probability of p that each bacterium will
die (independently) for whatever reason. What’s the distribution of the
number of colonies on the whole dish?
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This example is actually what is known as the “thinning of a Poisson
scatter”. If we have a Poisson scatter with intensity λ and each point
has a probability of p of staying, then the scatter of points that are kept
is a Poisson scatter with intensity λp.

39 Continuous Distributions

We’ve seen both continuous and discrete distributions so far, but have
mainly focused on the discrete. In the discrete case we learned how to
handle the expected value and the standard deviation, but now we want
to do the same thing for continuous distributions. Remember that the
main difference between discrete and continuous distributions is whether
we can count them or not. For example, with the binomial distribution,
we can go through the cases one at a time. With the normal distribution
we couldn’t do that! In order to figure out the distribution we had to
take the area under the curve. And so now, we get to the part where
integration will finally be used.

Let’s go back and remember how the probabilities of a normal distri-
bution were determined. We had some function, let’s say f(x), and this
gave us some bell curve. This bell curve came from looking like the his-
togram of the binomial distribution. To get the probability at a certain
point, the binomial distribution was easy since it was all rectangles. So
calculating the area was simple. Calculating the probability at a certain
point for the normal distribution was more difficult since we couldn’t
look at the distribution at a given point since the width was basically
zero! So we said we just need to take the integral:

That’s it! As long as the function f(x) is continuous, we can take this
integral, which is why these distributions are called continuous distribu-
tions. The function f(x) is called the probability density. Other than Wikipedia: Continuous Distribu-

tion
Wikipedia: Probability Density

being continuous, the only other thing we require of a probability den-
sity is that the area under the curve must be equal to 1 (or else it’s not
a distribution). This allows for

P (everything) =

At this point we might ask how all of the terminology from the
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discrete world moves into the continuous world. It turns out, it’s almost
the same! For example, in the discrete case we had the following formula
for expected value:

E(X) =

If you recall, by making the boxes smaller and smaller, we can turn this
into a Riemann sum which leads into integration! So for the continuous
case we have:

E(X) =

To calculate the variance, we have Var(X) = E(X2)−E(X)2 and so we
also need:

E(X2) =

which also gives us the standard deviation SD(X) =
√

Var(X).
Ok, so what about independence? Remember for the discrete case

we had the following definition for independence

P (X = x, Y = y) = P (X = x)P (Y = y)

Notice how for the continuous case this formula doesn’t help! Since the
probability at any point is equal to 0 we have that both sides always equal
0. In other words, if we used this formula, every continuous distribution
would be independent, which doesn’t make sense. We won’t be covering
how to define independence in the continuous case. If we have time at
the end of the year, I’ll cover it as a bonus, but for now we will skip it.
The main thing to know is that if two continuous random variables are
independent then all other independence rules hold (like we still have
E(XY ) = E(X)E(Y ) if X and Y are independent and both E(X) and
E(Y ) are defined and finite).
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