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26 Tail formula

Last time we talked about the expected value of a distribution:

We saw that, if we’re just trying to figure out whether something
succeeded or not, we can look at indicator functions instead of the prob-
ability itself. In this case, we let Xi denote the indicator function and
we end up with:

Since this equation looks so nice, we’re going to see whether we can
turn our original definition of E(X) into something nicer. It turns out,
we can in the case where our x are coming from a set {0, 1, . . . , n}. In
this case, if we calculate E(X) we get:

E(X) =P (X = 1)
+ P (X = 2) + P (X = 2)
+ P (X = 3) + P (X = 3) + P (X = 3)
+ P (X = 4) + P (X = 4) + P (X = 4) + P (X = 4)
+ · · ·

We can rewrite this into what’s known as the tail sum formula for ex-
pected value.
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Example 26.1 Suppose that we roll four fair six-sided dice and we
let M be the minimum value of the four numbers rolled. What is the
expected value of M?

27 Markov’s Inequality

Let’s go back to indicators again. For indicators, we took the sum of
the indicators to get the expected value of success of our event X. How
do we know if our sum of indicators is itself an indicator?

So let X1, X2, . . . , Xn be a bunch of events and let I1, I2, . . . , In be
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their indicator functions. In other words, if Xi occurs then Ii = 1, if Xi

does not occur then Ii = 0. If we think about it, an indicator only has
values 0 and 1; that is the definition of an indicator function. So what
about if we’re asking for the sum of indicators?

I = I1 + I2 + · · ·+ In

When is I an indicator? Well, I is an indicator if and only if I is equal
to 0 or 1 (by definition). Since each of the Ii can only have values 0 or 1,
that means at most one of the indicator functions can be 1 at any given
calculation. But this is true if and only if the events Xi are mutually
exclusive, i.e., no two events can happen at the same time. In this case,
we get the following equality:

If the eventsXi are not mutually exclusive, then we get what’s known
as Boole’s inequality. Wikipedia: Boole’s inequality

We can notice a couple things from this inequality by looking at the
indicator functions. Let I = I1 + · · ·+ In as before, then the right hand
side is equal to E(I). The left hand side, we can view it as the proba-
bility that at least one thing is true. In other words P (I ≥ 1). So we
can rewrite the above as:

We can generalize this for arbitrary expected value to get what’s
called Markov’s inequality. Wikipedia: Markov’s inequality

Example 27.1 Suppose we have a (non-negative) random variable
X and we know its expected value is equal to 5. What is the largest
probability of success that P (X ≥ 100) could be?
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28 Multiplication Moments

We’ve talked about how we can make random variables functions of one
another. The example we gave wasn’t that great, but we’ll be using
functions to see how we can easily calculate the expected value from one
random variable into another.

Let Y = f(X). Then

E (Y ) =

There are particular functions which mathematicians like to look at
in particular. Let f(x) = xk for some strictly positive integer k. Then

E(Xk) =

The distribution Xk is known as the kth moment of X.Wikipedia: Moment
If k = 1 then we have the first moment which is usually called the

expected value (or mean). If k = 2 then it’s called the second moment
or, alternatively, the mean square.

Example 28.1 Let’s calculate the mean square of the discrete uniform
distribution of the set {0, 1, 2}. First, notice that

E(X) =

The mean square is then given by:

E(X2) =

Notice how in general E(f(X)) 6= f(E(X)). In other words .
Let’s use functions in order to see why E(X + Y ) = E(X) + E(Y ).

Suppose we have two random variables X and Y and we want to calcu-
late E(X + Y ). To do this, let’s make a function f which takes in two
random variables and outputs a third: f(X,Y ) = X + Y . By the above
we have
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Another thing to note is that if we multiply a random variable by a
constant, then we can just pull the constant out:

E(cX) =

What happens when we try and multiply two random variables?

But we can’t actually separate here! The only time we can actually
separate is if X and Y are independent. In that case:

In other words, if X and Y are independent, then

29 Variance

When we were working on the binomial distribution, we had defined two
new concepts: the expected value and standard deviation. We already
handled the expected value, so let’s move onto the standard deviation.
We had that the standard deviation was defined as

√
np(1− p) where

np was the expected value.
What was the standard deviation keeping track of? It was keeping

track of how far away from the expected value we were. If we look at
what’s inside the square root and we expand it, we get np − npp =
E(X) − E(X)p. In other words, we get the expected value and then a
little correction factor.

If we let µ = E(X) be our correction factor, then
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Since we’ll eventually want to take the square root, we avoid having a
negative number by squaring our equation. This gives us what is called
the variance of a distributionWikipedia: Variance

The standard deviation is then the square root of the variance.Wikipedia: Standard Deviation

SD(X) =

Example 29.1 Suppose we have a fair eight sided die. Find SD(X)
where X is the number on the die after one roll.

What if we only cared about success/failure of an event? In this case,
we look at indicator functions and the formulas above become much
easier. Remember that whenever we have an event A, we can create
a random variable XA that indicates whether or not A succeeded. In
other words: XA is either equal to 1 or 0 and E(XA) = P (A). Then
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since XA is equal to 1 or 0 we have:

X2
A : 12 = 1 02 = 1 ⇒ X2

A = XA

So we have that

Var(XA) = E(X2
A)−E(XA)2 = E(XA)−E(XA)2 = P (A)−P (A)2 = P (A) (1− P (A))

30 Standardization

If we have constants a and b then E(aX + b) = .
Plugging this into the standard deviation we get:

We can use these formulas to create a standardized version of the ex-
pected value and the standard deviation. Let X? = X−E(X)

SD(X) Then:

E(X?) =

and

SD(X?) =

These are called the standard units for the distribution X.

This should look super familiar! Let µ = E(X) and σ = SD(X),
then the fractions we’re looking at are .

Example 30.1 The average height for men in Canada is 178 cm and
the standard deviation is roughly 7.5 cm. Approximately what percent-
age of Canadian men are taller than 166 cm?
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For women, the average Canadian is 164 cm with a standard devia-
tion of 7 cm. Unfortunately there is no data on non-binary or intersex
individuals.

31 Chebychev’s Inequality

Since the standard deviation tells us how far away things will stretch
from the expected value, there must be some relation between the two.
It turns out that given a random variable, the probability that it differs
from its expected value by more than k standard deviations is at most
1
k2 . This is known as Chebychev’s inequality:Wikipedia: Chebyshev’s inequal-

ity

Example 31.1 Say we’re working for a financial company who are
looking at all the transactions of their customers. They notice that
given one billion transactions, the average transaction is roughly $20
and if we square the values of the transactions, the average becomes
$404. Find an upper bound on how many transactions are over $50.
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32 Central Limit Theorem

Before we get into some laws and theorems, we’re quickly going to state
what variance looks like under addition. If X1, X2, . . . , Xn are all mu-
tually independent, then

This doesn’t work for dependent variables unfortunately! For exam-
ple, if X = Y (so they are dependent on one another) then we have

Var(X + Y ) = Var(2X) = SD(2X)2 = (2 SD(X))2 = 4 Var(X)

and
Var(X) + Var(Y ) = Var(X) + Var(X) = 2 Var(X)

Remember how for the binomial distribution we had something called
the square root law where we basically stated that as we increase the
number of trials then most trials would be close to the expected value.
This works with any distribution. We’ll go through this slowly.

First let’s suppose we have n independent random variables Xi each
with the same distributionX. In other words
for all i. Since expectation and variance are determined by distributions,
we also know E(Xi) = and Var(Xi) = . We
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let Sn be the sum of all the random variables:

Sn = X1 +X2 + · · ·+Xn

Then:

E(Sn) = Var(Sn) = SD(Sn) =

This gives us the square root law:

Theorem 32.1 (Square root law) Let Sn be the sum of n independent
random variables X1, X2, . . . , Xn each with the same distribution X.
Let X̄n = Sn

n be the average value. Then

We continue our trek by looking at the law of large numbers in this
context. As n increases, we see that SD(Sn) will grow while SD(X̄n)
decreases. This simple idea gives us the law of averages.

Wikipedia: Law of averages
Theorem 32.2 (Law of averages) Let Sn be the sum of n independent
random variables X1, X2, . . . , Xn each with the same distribution X.
Let X̄n = Sn

n be the average value. Then for every ε > 0

Notice that we don’t have an approximation for Sn in the theorem
above. That’s because there is no simple formula for the distribution of
Sn. Instead, we can use normal approximation to find a simple approx-
imation for Sn.Wikipedia: Central limit theo-

rem Theorem 32.3 (Central limit theorem) Let Sn be the sum of n in-
dependent random variables X1, X2, . . . , Xn each with the same distri-
bution X. For large n, the distribution of Sn is approximately normal,
i.e., E(Sn) = nE(X) and SD(Sn) =

√
n SD(X). In other words:

Where Φ is the standard normal CDF.

Example 32.4 In this example, we’ll consider what’s known as a ran-
dom walk. The problem is normally told from a physics perspective asWikipedia: Random walk
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this is where the idea came from.

Suppose you have an infinite line of slots and you put a particle
in the middle. Each second, the particle moves left with probability
p`, right with probability pr or stays where it is with probability ps,
i.e., P` + pr + ps = 1. Let’s suppose that the particle is having a lazy
day. It stays where it is half the time ps = 1

2 and it moves with equal
probability, i.e., p` = pr = 1

4 .

There are roughly 86, 400 seconds in a day, so let’s say we run this
experiment for a little longer than a day. After 88, 200 seconds, what are
the chances that the particle is 300 slots away to the right from where
it began.
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33 Skewness

Just like with the binomial distribution, sometimes our normal approx-
imation isn’t very good. We need to add some sort of correcting fac-
tor. Since in the central limit theorem we look at Sn−E(Sn)

SD(Sn) we let
X? = X−E(X)

SD(X) and look at our approximations from this perspective. In
this case, the first moment is given by:

E(X?) =

and the second moment is given by:

E(X2
? ) =

In order to find how much we’re off by, we look at the third moment,
and define skewness in that way.

skw(X) = E(X3
? ) =

If Sn = X1 +X2 + . . .+Xn where the Xi are independent each with
the same distribution X, then

skw(Sn) =

We won’t try and show where these formulas come because they are
difficult to show. If you do want to try and prove it you can do it by
first showing:

E
(
(Sn − E(Sn))3) = nE

(
(X − E(X))3)
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and
SD(Sn) =

√
nSD(X)

Putting these together gives you the above formula.
As a quick example when n = 2 we have the following:

E
(
(X1 +X2 − E(X1 +X2))3) = E((X1 +X2)3) + 3E((X1 +X2)2)E(X1 +X2) + 3E(X1 +X2)E(X1 +X2)2 + E(X1 +X2)3

= E(X3
1 ) + 3E(X2

1 )E(X1) + 3E(X1)E(X1)2 + E(X1)3 + E(X3
2 ) + 3E(X2

2 )E(X2) + 3E(X2)E(X2)2 + E(X2)3

= 2E((X − E(X))3)

and

SD(X1 +X2) =
√

Var(X1 +X2)
=
√

Var(X1) + Var(X2)
=
√

2
√

Var(X)
=
√

2 SDX
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