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7 Conditional probability

A lot of times we want to know the probability of something occurring
while also having some information about what has already happened.
As a quick example, imagine your friend has just rolled two dice, but
they kept the results from you. They ask you what are the chances that
they got snake eyes (two 1s). They then let you see one of the dice
and it’s a 1! We now have more information and the question becomes
whether this new information will change the probability that they rolled
two 1s. This is the idea of conditional probability.

Example 7.1 Let’s actually go into this example a little deeper and
see what happens. First we start by figuring out the initial probability
that your friend rolled two 1s on their die. Since each dice has 6 sides
there are 36 different possibilities:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

The set of these thirty-six outcomes gives us the sample space Ω. Our
friend is asking what the chances are that they rolled two 1s. Look-
ing at our sample space, we notice that A = {(1, 1)} which means our
probability is .

At this point your friend shows you that one of the two die is in fact
a 1! What is the probability that the other dice is a 1 as well? We might
think that since the other dice has 6 options, that the chance should be
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1
6 , but that’s not exactly correct. Your friend has a choice on which die� Common student mistake
they showed you. It could have been the first one or the second one and
so it’s not as simple as 1

6 . Instead, what we have to do is look at all of
our original 36 possibilities and ask which ones have a 1 in them to see
our new sample space. We’re left with:

So our sample space has 11 elements and only 1 of them is (1, 1). Our
probability is 1

11 which is much less than 1
6 .

How do we represent this mathematically? Notice that our event
A never changed. The event stayed as “two 1s” and so A = {(1, 1)}
throughout the whole process. Instead, we added more information.
Our friend told us that “one of the dice is in fact a 1”. Therefore we
have a new event B which is “one of the dice is 1” which gives us the
set of 11 elements from above. Our sample space is therefore B and our
new set is whatever is in both A and B.

In other words, the conditional probability of A given B is

Although this is nice, we want to try and work with probabilities asWikipedia: Conditional proba-
bility much as we can. So what we do is we convert the previous formula into

probabilities:

Another way to write this is the following:

We call this formula the multiplication rule. Intuitively what this is
saying is if the event B happens around 1/2 the time and if 1/4 the
time that B happens the event A happens , then A and B happen about
1/8 the time.

7.1 Tree diagrams

We can actually represent all of this with what are known as tree dia-
grams. A tree diagram is basically a scheme which allows us to graphi-
cally represent sample spaces for conditional probability. The best way
to see a tree diagram is through an example.
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Example 7.2 Suppose we have three bags of chocolate, each one con-
taining three different types of chocolate: White (W), Dark (D) and
Milk (M). But we know that the the quantities in each bag are differ-
ent! If the first bag has 2 whites and 1 milk, the second bag has 2 dark
and 2 milk and the third bag has 1 white, 1 dark and 2 milk, what is
the probability that we will get a dark chocolate if we randomly draw a
chocolate from a random bag?

� Common Student Mistake: Before we use conditional probability,
let’s talk about a common student mistake at this point. A common
mistake is to just add up all of the quantities (2+1 white, 1+2+2 milk
and 2 + 1 dark) and say that since there are 3 dark chocolates and 11
chocolates in total, you have a 3/11 chance of getting a dark chocolate!
This is wrong because you are completely forgetting about the bags! If
you chose the first bag, you have absolutely no chance of getting dark
chocolate. It’s important to keep track of all the information given in a
problem. Every word counts.

With the warning out of the way this is a perfect time to use condi-
tional probability and tree diagrams. For this we set up our diagram in
the following way:

Example 7.3 Let’s look at another example that might deal more with
real life. Say you’re midway through a class and want to know what your
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chances are of passing the class. You need to pass both exams to pass
the class. You’ve studied hard for the exam coming up and you’re sure
that you have a 95% chance of passing the first exam. The second exam
is harder to predict though and you think that if you pass the first exam,
then you have a 90% chance of passing the second exam, but if you fail
the first exam your chances will go down to 75%. What is the chance
you will pass the class?

We start off by making a tree diagram as before.

What are your chances of passing at least one exam? What about pass-
ing exactly one exam?

This second example is a good time to talk about average conditional
probabilities. We had set our event A to be “pass exactly one exam”
and we can condition that on the event B which is “pass the first exam”.
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What does this look like mathematically? We actually already saw this
above! We had

But notice that this is just a partition! We can extend this argument
to any partition to get the law of total probability. Wikipedia: Law of total proba-

bility
Note that the book calls this the
Rule of average conditional prob-
abilities.

Theorem 7.4 (Law of total probability) If A1, A2, . . . An is a partition
of Ω then

8 Independence

In the examples we saw in the previous section, our second event was
always dependent on our first event. But this is not always the case.
Think of rolling two die. If I roll the first dice, it doesn’t magically
change the probability for the second dice. Since the second die is not
dependent on the first we say the two events are independent.

Mathematically, we think of this as the probability of an event A not
changing no matter whether B occurs or not:

In this case say A and B are independent. A much more simple way to Wikipedia: Independence
view this definition is the following:

Working this around we have:

This gives us the multiplication rule for independent events The multiplication rule is of-
ten taken to be the definition
of independence (for example,
Wikipedia uses this as the defi-
nition of independence). Any of
the three definitions I have given
are all valid responses for the def-
inition of independence.

Example 8.1 Let’s look at flipping a coin twice as an example. We
first will draw the tree diagram:
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We easily see that our events are independent just by looking at the
diagram.

9 Sequence of events

We started looking at doing one event followed by another, but what
happens if we have a chain of multiple events? Say I flip 10 different
coins, or I draw 7 cards, or I pull out 34 bars of chocolate from a bag.
How do we find the probability of a sequence of events?

Let’s first start off slow. If we have two events we saw:

P (A ∩B) = P (B)P (A | B) = P (A)P (B | A)

How about if we have three events A, B, and C? Since we’re going in
order C is dependent on A and B, i.e., A ∩B. So we have:

P ((A∩B)∩C) = P (A∩B)P (C | (A∩B)) = P (A)P (B | A)P (C | (A∩B))

We should start seeing a pattern at this point. It turns out, we can keep
doing this forever and we get a multiplication rule for n events

Example 9.1 Let’s look at a quick example of how this might work
using our tree diagrams. Suppose we want to flip a coin two times with
the condition that if we flip a tails, then we draw a number between 1
and 3 out of a bag. Once we’ve drawn a number out, then we stop. If
the second flip is a heads, then we consider that as drawing a 0. The
tree diagram would look like:
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What is the probability that we flipped exactly 1 tails?

What is the probability that we pulled a 1 out of the bag?

We can also extend the notion of independence to an arbitrary se-
quence of events. If we have n events A1, A2, . . . , An, then we say they
are independent if they are pairwise independent. What this means is
for any two events Ai and Aj then Ai and Aj are independent. In this
case, the multiplication rule gives us:

An easy example of this is to just think of a coin toss. If you flip
multiple coins the coin flip of one coin doesn’t influence another coin’s
result. So the order that you flip the coins doesn’t matter.

Example 9.2 We finish with an extremely standard example of how
things in probability have unexpected results, can be complicated and
benefit from having structure. This problem is called the birthday prob-
lem. It’s a simple question: Say there are n people in a room. What is
the probability that at least two people have the same birthday? (We
ignore leap days. . . sorry)
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10 Bayes’ Rule

Let’s go back to the chocolate in a bag example from before. Recall that
we had three different bags which contained different chocolates. The
first bag has 2 whites and 1 milk, the second bag has 2 dark and 2 milk
and the third bag has 1 white, 1 dark and 2 milk. We were told we first
randomly chose a bag and then pick out a chocolate. The question we
asked at the time was, what are the chances the chocolate is dark.
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Now, we’re going to ask a slightly reverse question. Say that I ran-
domly pick a bag and pull out a chocolate and I show you that I pulled
out a dark chocolate. I then ask you, which bag do you think I pulled
the chocolate out of. Basically, we want to try and go backwards with
probability. If you look at the bags, the second bag has the most dark
chocolates so we’d predict that the second bag was the bag I most likely
pulled the chocolate from.

Let’s analyze this mathematically.

Let’s try and generalize this. LetA be our event “pulled a dark choco-
late”. Then we have three “prior” events which are the three bag choices:
B1, B2, B3. What we wanted to calculate was . To
do this we did:

This is called Bayes’ Rule. Wikipedia: Bayes’ rule
Bayes’ rule is sometimes called
Bayes’ theorem, Bayes’ law or
Bayes-Price theorem.

Note that we’re starting to notice that P (A | B) and P (B | A) are
both things we can measure! So it makes sense to start differentiating
which event comes before another event if we have a sequence of events.
If event A happens before event B then P (A | B) is called the posterior
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probability of A given B and P (B | A) is known as the likelihood of BWikipedia: Posterior probability
given a fixed A. The probability of event A (i.e., P (A)) is referred to asWikipedia: Likelihood
the prior probability.Wikipedia: Prior probability

Recall that earlier I asked the following question: “Say that I ran-
domly pick a bag and pull out a chocolate and I show you that I pulled
out a dark chocolate. What are your chances of guessing which bag I
pulled the chocolate out of?” Let’s next say that I’m being manipulative
and I pose the following question instead of the one from before. “Say
that I pick a bag and pull out a chocolate and I show you that I pulled
out a dark chocolate. What are your chances of guessing which bag I
pulled the chocolate out of?”

� Common student error: It’s the same as before!
It’s actually not the same as before! What is different about the sec-

ond question? .
Usually when we use the word “randomly” we are making the implicit
assumption that all outcomes are equally likely to occur. So when I
“randomly chose” a bag, each bag has 1

3 chance of being chosen. But
what if it’s no longer random? This actually makes the problem much
harder because you no longer know the values of P (Bi) from above. At
this point, it’s better to keep them as variables since you don’t have
enough information to solve the problem. This gives the following:
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