
Week 9

2–6 Mar 2020

9.1 Differentials - §3.10

Remember how we had said that dy
dx is not a fraction and we shouldn’t think of

it as one? We’re about to change all of that!
We can think of dy as a very small change, an approximation of a larger

∆y. Let’s just pretend that f ′(x) = dy
dx is a fraction and put like terms

on the same side. So we have . We call dx and y

.
It turns out we can use differentials as a good approximation of ∆y. Let’s

see an example to see what in the world I’m talking about.
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Example 9.1 Let f(x) = x2 − 2x + 4. Let us look at the change from 2 to
2.01.

So this “division” turns out to be a good approximation! Also, finding dy
was a lot easier to compute than ∆y.

9.2 Hyperbolic functions - §3.11

Let’s talk about hyperpbolic functions next. Recall that we can get the sin and
cos functions from a circle. If instead we looked at a hyperbola, we would get
the hyperbolic functions.
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They’re hard to remember, so here are their definitions:

sinh(x) ex−e−x

2 csch(x) 1
sinh(x)

cosh(x) ex+e−x

2 sech(x) 1
cosh(x)

tanh(x) sinh(x)
cosh(x) coth(x) 1

tanh(x)

Here is what sinh(x) and cosh(x) look like

If we’re lucky, we’ll see some applications of these functions later in the term,
but for now let’s look at some of the properties of these functions.

sinh(−x) = − sinh(x) cosh(−x) = cosh(x)
sinh(x+ y) = sinh(x) cosh(x) + cosh(x) sinh(y) cosh2(x)− sinh2(x) = 1
cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y) 1− tanh2(x) = sech2(x)

We can also compute the derivatives of the hyperbolic functions fairly easily
using their original definitions using exponential functions.
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Example 9.2 Let f(x) = cosh(x), what is its derivative?

Here are all the derivatives for the hyperbolic functions.

f(x) f ′(x) f(x) f ′(x)
sinh(x) csch(x)
cosh(x) sech(x)
tanh(x) coth(x)

Just like the trig functions, hyperbolic functions have inverses too.

f(x) f−1(x) Domain
sinh(x) arsinh(x) = sinh−1(x) = ln(x+

√
x2 + 1) R

cosh(x) arcosh(x) = cosh−1(x) = ln(x+
√
x2 − 1) [1,∞)

tanh(x) artanh(x) = tanh−1(x) = 1
2 ln

(
1+x
1−x

)
(−1, 1)

csch(x) arcsch(x) = csch−1(x) = ln
(

1
x +

√
1
x2 + 1

)
R\ {0}

sech(x) arsech(x) = sech−1(x) = ln
(

1+
√

1−x2

x

)
(0, 1]

coth(x) arcoth(x) = coth−1(x) = 1
2 ln

(
x+1
x−1

)
(−∞,−1) ∪ (1,∞)

Similarly to the inverse trig functions, the inverse hyperbolic functions have
derivatives.

f(x) f ′(x) f(x) f ′(x)
arsinh(x) 1√

1+x2 arcsch(x) − 1
|x|
√
x2+1

arcosh(x) 1√
x2−1 arsech(x) − 1

x
√

1−x2

artanh(x) 1
1−x2 arcoth(x) 1

1−x2

�

artanh(x) and arcoth(x) appear to have the same function as a derivative, but
recall that artanh(x) and arcoth(x) have different domains, so the derivatives
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are defined on different parts of the graph.

9.3 Maximum and minimum values - §4.1

A lot of problems in life are optimization problems: when do functions reach
maximum/minimum values. We kinda saw this with our astronaut problem
where we wanted to find maximum acceleration. We also see this for example
when trying to decide:

• What was the peak value of CO2 in the atmosphere before 0 BCE?

• What time do restaurants have the most amount of clientele?

• What shape of packaging for our product do we need to minimize costs?

There are an endless supply of max/min problems.

Exercise 9.3 Try and come up with a max/min problem and share it with
your neighbor:

Max/Min problem:

Mathematically, what is maximum and minimum though? A function f has
an absolute maximum value at c on a domain D if f(c) ≥ f(x) for every x ∈ D.
Similarly, a function f has an absolute minimum value at c on a domain d if
f(c) ≤ f(x) for every x ∈ D. Absolute values are sometimes known as global val-
ues. An extreme value of f is an
of f .

We can also look at points which are maximal/minimal in a smaller area. If
f(c) ≥ f(x) for every x near c then we say f(c) is a local maximum. Similarly,
f(c) is a local minimum if f(c) ≤ f(x) for every x near c.
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Example 9.4

Exercise 9.5 With a partner, fill in the absolute max/min and the local
max/mins in the domain [−3, 4] on the following graph:

How do we know that extreme values even exist? Maybe we have some graph
where there are no extreme values! This turns out not to be the case as was
shown by Bernard Bolzano in the 1830s when he proved the following result.

Theorem 9.6 (Extreme value theorem) If f is continuous on a closed interval
[a, b], then f attains an absolute maximum value f(c) and an absolute minimum
value f(d) at some numbers c and d in [a, b].
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What about local maxima and minima? It turns out that Pierre Fermat
gave a nice property on local maxima and minima.

Theorem 9.7 (Fermat’s Theorem) If f has a local maximum or minimum at
c and if f ′(c) exists then f ′(c) = 0.

�

The book (rightfully so) puts up a million warnings about this theorem.
It’s very easy to want to say that the theorem says more than it actually does.
There are 3 common errors that students make with this theorem, two of which
are mentioned in the book.

(1)

(2)

(3)

Although there are a lot of easy pitfalls with Fermat’s theorem, it does sug-
gest that maybe, we can determine how a function looks based on its derivative.
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A number of a function f is a number c (in the domain) such that
f ′(c) = 0 or f ′(c) does not exist. In other words, Fermat’s theorem becomes:

If f has a local maximum or minimum at c then c is a critical number of f .
It turns out we can use cricital numbers to tell us when we have an absolute

max or min in some interval [a, b]. For this we:

(1) Find the critical values of f in the interval (a, b).

(2) Find the values of f at the critical values and at the end points of the
interval (at a and b).

(3) The largest value of the previous step is the absolute maximum and the
smallest value is the absolute minimum.

Example 9.8 Let f(x) = x3−x2−x, find its absolute maximum and minimum
on the interval [−1

2 , 2].
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Exercise 9.9 Let f(x) = x3 + x2 − 1, find its extreme values on the interval
[−1, 1].

9.4 The mean value theorem - §4.2

Our next goal is the mean value theorem. We start off with Rolle’s theorem,
which was named after Michel Rolle who published it in 1691 for polynomial
functions. Although Rolle was the first to publish his ideas, Indian mathemati-
cian Bhāskara II (1114–1185) is credited to be the first person we know of to
have knowledge of the theorem. In addition, the theorem itself was not proved
in full until 1823 when Cauchy proved it in its entirety.

Theorem 9.10 (Rolle’s theorem) Let f be a function that satisfies the follow-
ing three hypotheses:

(1) f is continuous on [a, b].

(2) f is differentiable on (a, b).

(3) f(a) = f(b).

Then there is a number c in (a, b) such that f ′(c) = 0.
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Rolle’s theorem is used to find the number of roots a function might have.

Example 9.11 Show that the equation f(x) = x3 has exactly one real root.
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The mean value theorem was known first to Parameshvara (1370–1460), an
Indian mathematician. In Europe, it was first stated by Joseph-Louis Lagrange
in the following form.

Theorem 9.12 (Mean value theorem) Let f be a function such that:

(1) f is continuous on [a, b].

(2) f is differentiable on (a, b).

Then there exists a number c in (a, b) such that

f ′(c) = f(b)− f(a)
b− a

Sometimes this theorem is known as Lagrange’s mean value theorem. There
is an extended version of this theorem which we won’t go over called the extended
mean value theorem or Cauchy’s mean value theorem.
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Example 9.13 Let f(x) = x2 − 2 and let’s look at the interval [0, 2]. Show
the mean value thorem is true on this interval.

The mean value theorem allows us to state the following two theorems.

Theorem 9.14 If f ′(x) = 0 for all x in an interval (a, b) then f is constant
on (a, b).

Corollary 9.15 If f ′(x) = g′(x) for all x in an interval (a, b), then f − g is
constant on (a, b); i.e., f(x) = g(x) + c for some constant c.

Page 111


