Facial Weak Order

Aram Dermenjian

Joint work with: Christophe Hohlweg (LACIM) and Vincent Pilaud (CNRS & LIX)

Université du Québec à Montréal

6 July 2016
History and Background

- The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.
History and Background

- The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.
- **Finite Coxeter System** \((W, S)\) such that
 \[W := \langle s \in S \mid (s_i s_j)^{m_{i,j}} = e \text{ for } s_i, s_j \in S \rangle \]

 where \(m_{i,j} \in \mathbb{N}^* \) and \(m_{i,j} = 1 \) only if \(i = j \).
- A **Coxeter diagram** \(\Gamma_W \) for a Coxeter System \((W, S)\) has \(S \) as a vertex set and an edge labelled \(m_{i,j} \) when \(m_{i,j} > 2 \).
History and Background

- The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

Example

\[W_{B_3} = \langle s_1, s_2, s_3 \mid s_1^2 = s_2^2 = s_3^2 = (s_1 s_2)^4 = (s_2 s_3)^3 = (s_1 s_3)^2 = e \rangle \]

\[\Gamma_{B_3} : \]

\[s_1 \quad 4 \quad s_2 \quad s_3 \]
History and Background

- The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

Let (W, S) be a Coxeter system.

- Let $w \in W$ such that $w = s_1 \ldots s_n$ for some $s_i \in S$. We say that w has length n, $\ell(w) = n$, if n is minimal.

- Let the (right) weak order be the order on the Cayley graph where $w \xrightarrow{wS}$ and $\ell(w) < \ell(ws)$.

- For finite Coxeter systems, there exists a longest element in the weak order, w_\circ.

History and Background

The weak order was introduced on Coxeter groups by Björner in 1984, it was shown to be a lattice.

Example

Let Γ_{A_2}: $s \rightarrow t$. $sts = w_0 = tst$

For finite Coxeter systems, there exists a longest element in the weak order, w_{\circ}.
Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 1. gave a local definition of this order using covers,
 2. gave a global definition of this order combinatorially, and
 3. showed that the poset for this order is a lattice.

- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They

1. gave a local definition of this order using covers, ✓
2. gave a global definition of this order combinatorially, and
3. showed that the poset for this order is a lattice.

In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 1. gave a local definition of this order using covers,
 2. gave a global definition of this order combinatorially, and
 3. showed that the poset for this order is a lattice.

- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.

- Our motivation was to continue this work for all Coxeter groups.
Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 1. gave a local definition of this order using covers,
 2. gave a global definition of this order combinatorially, and
 3. showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.
Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type \(A \) using inversion tables. They
 1. gave a local definition of this order using covers, ✔
 2. gave a global definition of this order combinatorially, and ✔
 3. showed that the poset for this order is a lattice. ✔

- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.

- Our motivation was to continue this work for all Coxeter groups.
Parabolic Subgroups

Let $I \subseteq S$.

- $W_I = \langle I \rangle$ is the **standard parabolic subgroup** with long element denoted w_0, I.
- $W^I := \{ w \in W \mid \ell(w) \leq \ell(ws), \text{ for all } s \in I \}$ is the set of minimal length coset representatives for W/W_I.
- Any element $w \in W$ admits a unique factorization $w = w^I \cdot w_I$ with $w^I \in W^I$ and $w_I \in W_I$.
- By convention in this talk xW_I means $x \in W^I$.
- **Coxeter complex** - \mathcal{P}_W - the abstract simplicial complex whose faces are all the standard parabolic cosets of W.

![Diagram of Coxeter complex](image-url)
Facial Weak Order

Definition (Krob et.al. [2001], Palacios, Ronco [2006])

The (right) facial weak order is the order \leq_F on the Coxeter complex \mathcal{P}_W defined by cover relations of two types:

1. $xW_I \leq xW_{I\cup\{s\}}$ if $s \notin I$ and $x \in W_{I\cup\{s\}}$,
2. $xW_I \leq xw_{I\setminus\{s\}}W_{I\setminus\{s\}}$ if $s \in I$,

where $I \subseteq S$ and $x \in W^I$.
Facial weak order example

(1) \(xW_I \leq xW_{I \cup \{s\}} \) if \(s \notin I \) and \(x \in W_{I \cup \{s\}} \)

(2) \(xW_I \leq xw_0,w_{I \setminus \{s\}}W_{I \setminus \{s\}} \) if \(s \in I \)

![Diagram of facial weak order example]
Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 1. gave a local definition of this order using covers, ✓
 2. gave a global definition of this order combinatorially, and ✓
 3. showed that the poset for this order is a lattice. ✓

- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.

- Our motivation was to continue this work for all Coxeter groups.
Root System

- Let \((V, \langle \cdot, \cdot \rangle)\) be a Euclidean space.
- Let \(W\) be a group generated by a set of reflections \(S\). \(W \hookrightarrow O(V)\) gives representation as a finite reflection group.
- The reflection associated to \(\alpha \in V \setminus \{0\}\) is
 \[s_\alpha(v) = v - \frac{2 \langle v, \alpha \rangle}{||\alpha||^2} \alpha \quad (v \in V)\]

- A root system is \(\Phi := \{\alpha \in V \mid s_\alpha \in W, ||\alpha|| = 1\}\)
- We have \(\Phi = \Phi^+ \sqcup \Phi^-\) decomposable into positive and negative roots.
Inversion Sets

Let \((W, S)\) be a Coxeter system. Define \((left)\ inversion\ sets\) as the set \(N(w) := \Phi^+ \cap w(\Phi^-)\).

Example

Let \(\Gamma_{A_2} : s \rightarrow t\), with \(\Phi\) given by the roots:

\[
N(ts) = \Phi^+ \cap ts(\Phi^-)
\]

\[
= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}
\]

\[
= \{\alpha_t, \gamma\}
\]
Weak order and Inversion sets

Given \(w, u \in W \) then \(w \leq_R u \) if and only if \(N(w) \subseteq N(u) \).

Example

Let \(\Gamma_{A_2} : s \rightarrow t \), with \(\Phi \) given by the roots

\[
\phi = \{ \alpha_t, \gamma \} \quad \Phi^+ = \{ \alpha_s, \gamma \}
\]

\[
\{ \alpha_t \} \quad \{ \alpha_s \}
\]

\[\gamma = \alpha_s + \alpha_t \]
Root Inversion Set

Definition (Root Inversion Set)

Let xW_I be a standard parabolic coset. The root inversion set is the set

$$R(xW_I) := x(\Phi^- \cup \Phi_I^+)$$

Note that $N(x) = R(xW_{\emptyset}) \cap \Phi^+$.
Root Inversion Set

Example

\[R(sW\{t\}) = s(\Phi^- \cup \Phi^+\{t\}) \]
\[= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\}) \]
\[= \{\alpha_s, -\gamma, -\alpha_t, \gamma\} \]
Root Inversion Set

Example

\[
R(sW_{\{t\}}) = s(\Phi^- \cup \Phi^+_{\{t\}}) \\
= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\}) \\
= \{\alpha_s, -\gamma, -\alpha_t, \gamma\}
\]
Equivalent definitions

Theorem (D., Hohlweg, Pilaud [2016])

The following conditions are equivalent for two standard parabolic cosets xW_I and yW_J in the Coxeter complex \mathcal{P}_W:

1. $xW_I \leq_F yW_J$
2. $R(xW_I) \setminus R(yW_J) \subseteq \Phi^-$ and $R(yW_J) \setminus R(xW_I) \subseteq \Phi^+$.
3. $x \leq_R y$ and $xw_{\circ,I} \leq_R yw_{\circ,J}$.

Remark Note that showing (1) \Rightarrow (3) and (3) \Rightarrow (2) is easy, but (2) \Rightarrow (1) is more difficult. We used induction on the symmetric difference between the root inversion sets for the proof.
Equivalence for type A_2 Coxeter System

\[\alpha_s \gamma \alpha_t \]

\[e \leq R y \]

\[x \leq_R y \]

\[x_{W_I} \leq_F y_{W_J} \]
Equivalence for type A_2 Coxeter System

α_s, γ, $-\alpha_t$

α_t, $-\gamma$, $-\alpha_s$

$xW_I \leq_F yW_J$

$R(xW_I) \setminus R(yW_J) \subseteq \Phi^-$

$R(yW_J) \setminus R(xW_I) \subseteq \Phi^+$

$x \leq_R y$

$xw_{0,I} \leq_R yw_{0,J}$
Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 1. gave a local definition of this order using covers,
 2. gave a global definition of this order combinatorially, and
 3. showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Our motivation was to continue this work for all Coxeter groups.
Facial weak order lattice

Theorem (D., Hohlweg, Pilaud [2016])

The facial weak order \((\mathcal{P}_W, \leq_F)\) is a lattice with the meet and join of two standard parabolic cosets \(xW_I\) and \(yW_J\) given by:

\[
\begin{align*}
 xW_I \land yW_J &= z \land W_{K \land}, \\
 xW_I \lor yW_J &= z \lor W_{K \lor}.
\end{align*}
\]

where,

\[
\begin{align*}
 z \land &= x \land y & \text{and} & \quad K \land &= D_L(z^{-1}(xW_o,l \land yW_o,J)) \quad \text{and} \\
 z \lor &= xW_o,l \lor yW_o,J & \text{and} & \quad K \lor &= D_L(z^{-1}(x \lor y))
\end{align*}
\]

Corollary (D., Hohlweg, Pilaud [2016])

The weak order is a sublattice of the facial weak order lattice.
Example: A_2 and B_2
Example: A_2 and B_2

Example (Meet example)

Recall

$$xW_I \land yW_J = z_\land W_K_\land$$
where $z_\land = x \land y$

$$K_\land = D_L(z_\land^{-1}(xw_o,I \land yw_o,J))$$

We compute $ts \land stsW\{t\}$.

$$z_\land = ts \land sts = e$$

$$K_\land = D_L(z_\land^{-1}(tsw_o,\emptyset \land stsw_o,t))$$
$$= D_L(e(ts \land stst))$$
$$= D_L(ts) = \{t\}.$$
Proof outline

Recall that \(x W_I \leq_F y W_J \iff x \leq_R y \), and \(x w_o, I \leq_R y w_o, J \).

We want to show that \(x W_I \wedge y W_J = z \wedge W K \) where \(z = x \wedge y \) and \(K = D_L(z^{-1}(xw_o, I \wedge yw_o, J)) \).

- First we show that this element is in the Coxeter complex \(z \in W^K \).
- We then show it’s a lower bound: \(x \wedge y \leq_R x, y \). Also, \(w_o, K \leq_R z^{-1}(xw_o, I \wedge yw_o, J) \) implies \(z w_o, K \leq_R xw_o, I \wedge yw_o, J \).
- Finally we show uniqueness by supposing there exists another element \(z W_K \leq_F x W_I, y W_J \). Then we have \(z \leq_R x \wedge y = z \).

Join is found by an anti-automorphism.
Möbius function

Recall that the *Möbius function* of a poset \((P, \leq)\) is the function \(\mu : P \times P \to \mathbb{Z}\) defined inductively by

\[
\mu(p, q) := \begin{cases}
1 & \text{if } p = q, \\
- \sum_{p \leq r < q} \mu(p, r) & \text{if } p < q, \\
0 & \text{otherwise.}
\end{cases}
\]

Proposition (D., Hohlweg, Pilaud [2016])

The Möbius function of the facial weak order is given by

\[
\mu(eW_\emptyset, yW_J) = \begin{cases}
(-1)^{|J|}, & \text{if } y = e, \\
0, & \text{otherwise.}
\end{cases}
\]
Quotients of the facial weak order
Lattice Congruences

Definition

A **lattice congruence** is an equivalence relation \(\equiv \) on a lattice \((L, \leq)\) such that for each \(x_1 \equiv x_2 \) and \(y_1 \equiv y_2 \) then

1. \(x_1 \land y_1 \equiv x_2 \land y_2 \), and
2. \(x_1 \lor y_1 \equiv x_2 \lor y_2 \).

Theorem (D., Hohlweg, Pilaud [2016])

Given a lattice congruence \(\equiv \) on \((W, \leq_R)\), the equivalence classes on \((\mathcal{P}_W, \leq_F)\) defined by

\[
x W_I \equiv y W_J \iff x \equiv y \text{ and } x w_{\circ, I} \equiv y w_{\circ, J}
\]

give us a lattice congruence.
Corollary (D., Hohlweg, Pilaud [2016])

Let the (left) root descent set of a coset xW_I be the set of roots

$$D(xW_I) := R(xW_I) \cap \pm \Delta \subseteq \Phi.$$

Let $xW_I \equiv_{\text{des}} yW_J$ if and only if $D(xW_I) = D(yW_J)$.

\[\text{Diagram: Facial Boolean Lattice} \]
Corollary (D., Hohlweg, Pilaud [2016])

Let \(c \) be any Coxeter element of \(W \). Let \(\equiv^c \) be the \(c \)-Cambrian congruence (see Reading [Cambrian Lattice, 2004]). Then let

\[xW_I \equiv^c yW_J \iff x \equiv^c y \text{ and } xw_\circ,I \equiv^c yw_\circ,J. \]
Thank you!